File size: 18,298 Bytes
e86199a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend to avoid GUI issues
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from typing import Dict, List, Any, Tuple, Optional
import json
import io
import base64
import tempfile
import os
import plotly.graph_objects as go
import plotly.express as px
from pyvis.network import Network
class GraphVisualizer:
def __init__(self):
self.color_map = {
'PERSON': '#FF6B6B',
'ORGANIZATION': '#4ECDC4',
'LOCATION': '#45B7D1',
'CONCEPT': '#96CEB4',
'EVENT': '#FFEAA7',
'OBJECT': '#DDA0DD',
'UNKNOWN': '#95A5A6'
}
def visualize_graph(self,
graph: nx.DiGraph,
layout_type: str = "spring",
show_labels: bool = True,
show_edge_labels: bool = False,
node_size_factor: float = 1.0,
figsize: Tuple[int, int] = (12, 8)) -> str:
"""Create a matplotlib visualization of the graph and return file path."""
if not graph.nodes():
return self._create_empty_graph_image()
# Create figure
plt.figure(figsize=figsize)
plt.clf()
# Calculate layout
pos = self._calculate_layout(graph, layout_type)
# Get node properties
node_colors = [self.color_map.get(graph.nodes[node].get('type', 'UNKNOWN'), '#95A5A6')
for node in graph.nodes()]
node_sizes = [graph.nodes[node].get('size', 20) * node_size_factor * 10
for node in graph.nodes()]
# Draw nodes
nx.draw_networkx_nodes(graph, pos,
node_color=node_colors,
node_size=node_sizes,
alpha=0.8)
# Draw edges
nx.draw_networkx_edges(graph, pos,
edge_color='gray',
arrows=True,
arrowsize=20,
alpha=0.6,
width=1.5)
# Draw labels
if show_labels:
# Create labels with importance scores
labels = {}
for node in graph.nodes():
importance = graph.nodes[node].get('importance', 0.0)
labels[node] = f"{node}\n({importance:.2f})"
nx.draw_networkx_labels(graph, pos, labels, font_size=8)
# Draw edge labels
if show_edge_labels:
edge_labels = {(u, v): data.get('relationship', '')
for u, v, data in graph.edges(data=True)}
nx.draw_networkx_edge_labels(graph, pos, edge_labels, font_size=6)
plt.title("Knowledge Graph", fontsize=16, fontweight='bold')
plt.axis('off')
plt.tight_layout()
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
plt.savefig(temp_file.name, format='png', dpi=150, bbox_inches='tight')
plt.close()
return temp_file.name
def _calculate_layout(self, graph: nx.DiGraph, layout_type: str) -> Dict[str, Tuple[float, float]]:
"""Calculate node positions using specified layout algorithm."""
try:
if layout_type == "spring":
return nx.spring_layout(graph, k=1, iterations=50)
elif layout_type == "circular":
return nx.circular_layout(graph)
elif layout_type == "shell":
return nx.shell_layout(graph)
elif layout_type == "kamada_kawai":
return nx.kamada_kawai_layout(graph)
elif layout_type == "random":
return nx.random_layout(graph)
else:
return nx.spring_layout(graph, k=1, iterations=50)
except:
# Fallback to simple layout if algorithm fails
return nx.spring_layout(graph, k=1, iterations=50)
def _create_empty_graph_image(self) -> str:
"""Create an image for empty graph."""
plt.figure(figsize=(8, 6))
plt.text(0.5, 0.5, 'No graph data to display',
horizontalalignment='center', verticalalignment='center',
fontsize=16, transform=plt.gca().transAxes)
plt.axis('off')
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
plt.savefig(temp_file.name, format='png', dpi=150, bbox_inches='tight')
plt.close()
return temp_file.name
def create_interactive_html(self, graph: nx.DiGraph) -> str:
"""Create an interactive HTML visualization using vis.js."""
if not graph.nodes():
return "<div>No graph data to display</div>"
# Convert graph to vis.js format
nodes = []
edges = []
for node, data in graph.nodes(data=True):
nodes.append({
"id": node,
"label": node,
"color": self.color_map.get(data.get('type', 'UNKNOWN'), '#95A5A6'),
"size": data.get('size', 20),
"title": f"Type: {data.get('type', 'UNKNOWN')}<br>"
f"Importance: {data.get('importance', 0.0):.2f}<br>"
f"Description: {data.get('description', 'N/A')}"
})
for u, v, data in graph.edges(data=True):
edges.append({
"from": u,
"to": v,
"label": data.get('relationship', ''),
"title": data.get('description', ''),
"arrows": {"to": {"enabled": True}}
})
html_template = f"""
<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vis-network/standalone/umd/vis-network.min.js"></script>
<style>
#mynetworkid {{
width: 100%;
height: 600px;
border: 1px solid lightgray;
}}
</style>
</head>
<body>
<div id="mynetworkid"></div>
<script>
var nodes = new vis.DataSet({json.dumps(nodes)});
var edges = new vis.DataSet({json.dumps(edges)});
var container = document.getElementById('mynetworkid');
var data = {{
nodes: nodes,
edges: edges
}};
var options = {{
nodes: {{
shape: 'dot',
scaling: {{
min: 10,
max: 30
}},
font: {{
size: 12,
face: 'Tahoma'
}}
}},
edges: {{
font: {{align: 'middle'}},
color: {{color:'gray'}},
arrows: {{to: {{enabled: true, scaleFactor: 1}}}}
}},
physics: {{
enabled: true,
stabilization: {{enabled: true, iterations: 200}}
}},
interaction: {{
hover: true,
tooltipDelay: 200
}}
}};
var network = new vis.Network(container, data, options);
</script>
</body>
</html>
"""
return html_template
def create_statistics_summary(self, graph: nx.DiGraph, stats: Dict[str, Any]) -> str:
"""Create a formatted statistics summary."""
if not graph.nodes():
return "No graph statistics available."
# Entity type distribution
type_counts = {}
for node, data in graph.nodes(data=True):
node_type = data.get('type', 'UNKNOWN')
type_counts[node_type] = type_counts.get(node_type, 0) + 1
# Relationship type distribution
rel_counts = {}
for u, v, data in graph.edges(data=True):
rel_type = data.get('relationship', 'unknown')
rel_counts[rel_type] = rel_counts.get(rel_type, 0) + 1
summary = f"""
## Graph Statistics
**Basic Metrics:**
- Nodes: {stats['num_nodes']}
- Edges: {stats['num_edges']}
- Density: {stats['density']:.3f}
- Connected: {'Yes' if stats['is_connected'] else 'No'}
- Components: {stats['num_components']}
- Average Degree: {stats['avg_degree']:.2f}
**Entity Types:**
"""
for entity_type, count in sorted(type_counts.items()):
summary += f"\n- {entity_type}: {count}"
summary += "\n\n**Relationship Types:**"
for rel_type, count in sorted(rel_counts.items()):
summary += f"\n- {rel_type}: {count}"
return summary
def create_entity_list(self, graph: nx.DiGraph, sort_by: str = "importance") -> str:
"""Create a formatted list of entities."""
if not graph.nodes():
return "No entities found."
entities = []
for node, data in graph.nodes(data=True):
entities.append({
'name': node,
'type': data.get('type', 'UNKNOWN'),
'importance': data.get('importance', 0.0),
'description': data.get('description', 'N/A'),
'connections': graph.degree(node)
})
# Sort entities
if sort_by == "importance":
entities.sort(key=lambda x: x['importance'], reverse=True)
elif sort_by == "connections":
entities.sort(key=lambda x: x['connections'], reverse=True)
elif sort_by == "name":
entities.sort(key=lambda x: x['name'])
entity_list = "## Entities\n\n"
for entity in entities:
entity_list += f"""
**{entity['name']}** ({entity['type']})
- Importance: {entity['importance']:.2f}
- Connections: {entity['connections']}
- Description: {entity['description']}
"""
return entity_list
def get_layout_options(self) -> List[str]:
"""Get available layout options."""
return ["spring", "circular", "shell", "kamada_kawai", "random"]
def get_entity_types(self, graph: nx.DiGraph) -> List[str]:
"""Get unique entity types from the graph."""
types = set()
for node, data in graph.nodes(data=True):
types.add(data.get('type', 'UNKNOWN'))
return sorted(list(types))
def create_plotly_interactive(self, graph: nx.DiGraph, layout_type: str = "spring") -> go.Figure:
"""Create an interactive Plotly visualization of the graph."""
if not graph.nodes():
# Return empty figure
fig = go.Figure()
fig.add_annotation(
text="No graph data to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
return fig
# Calculate layout
pos = self._calculate_layout(graph, layout_type)
# Prepare node data
node_x = []
node_y = []
node_text = []
node_info = []
node_colors = []
node_sizes = []
for node in graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
data = graph.nodes[node]
node_type = data.get('type', 'UNKNOWN')
importance = data.get('importance', 0.0)
description = data.get('description', 'N/A')
connections = graph.degree(node)
node_text.append(node)
node_info.append(
f"<b>{node}</b><br>"
f"Type: {node_type}<br>"
f"Importance: {importance:.2f}<br>"
f"Connections: {connections}<br>"
f"Description: {description}"
)
node_colors.append(self.color_map.get(node_type, '#95A5A6'))
node_sizes.append(max(10, data.get('size', 20)))
# Prepare edge data
edge_x = []
edge_y = []
edge_info = []
for edge in graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_data = graph.edges[edge]
relationship = edge_data.get('relationship', 'connected')
edge_info.append(f"{edge[0]} β {edge[1]}<br>Relationship: {relationship}")
# Create edge trace
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=2, color='gray'),
hoverinfo='none',
mode='lines'
)
# Create node trace
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
hoverinfo='text',
text=node_text,
hovertext=node_info,
textposition="middle center",
marker=dict(
size=node_sizes,
color=node_colors,
line=dict(width=2, color='white')
)
)
# Create figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='Interactive Knowledge Graph',
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="Hover over nodes for details. Drag to pan, scroll to zoom.",
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002,
xanchor='left', yanchor='bottom',
font=dict(color="gray", size=12)
)],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white'
))
return fig
def create_pyvis_interactive(self, graph: nx.DiGraph, layout_type: str = "spring") -> str:
"""Create an interactive pyvis visualization and return HTML file path."""
if not graph.nodes():
return self._create_empty_pyvis_graph()
# Create pyvis network
net = Network(height="600px", width="100%", bgcolor="#ffffff", font_color="black")
# Configure physics
net.set_options("""
{
"physics": {
"enabled": true,
"stabilization": {"enabled": true, "iterations": 200},
"barnesHut": {
"gravitationalConstant": -2000,
"centralGravity": 0.3,
"springLength": 95,
"springConstant": 0.04,
"damping": 0.09
}
},
"interaction": {
"hover": true,
"tooltipDelay": 200,
"hideEdgesOnDrag": false
}
}
""")
# Add nodes
for node, data in graph.nodes(data=True):
node_type = data.get('type', 'UNKNOWN')
importance = data.get('importance', 0.0)
description = data.get('description', 'N/A')
connections = graph.degree(node)
# Node properties
color = self.color_map.get(node_type, '#95A5A6')
size = max(10, data.get('size', 20))
# Tooltip text
title = f"""
<b>{node}</b><br>
Type: {node_type}<br>
Importance: {importance:.2f}<br>
Connections: {connections}<br>
Description: {description}
"""
net.add_node(node, label=node, title=title, color=color, size=size)
# Add edges
for u, v, data in graph.edges(data=True):
relationship = data.get('relationship', 'connected')
title = f"{u} β {v}<br>Relationship: {relationship}"
net.add_edge(u, v, title=title, arrows="to", color="gray")
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.html', mode='w')
net.save_graph(temp_file.name)
temp_file.close()
return temp_file.name
def _create_empty_pyvis_graph(self) -> str:
"""Create an empty pyvis graph."""
net = Network(height="600px", width="100%", bgcolor="#ffffff", font_color="black")
net.add_node(1, label="No graph data", color="#cccccc")
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.html', mode='w')
net.save_graph(temp_file.name)
temp_file.close()
return temp_file.name
def get_visualization_options(self) -> List[str]:
"""Get available visualization types."""
return ["matplotlib", "plotly", "pyvis", "vis.js"]
def get_relationship_types(self, graph: nx.DiGraph) -> List[str]:
"""Get unique relationship types from the graph."""
types = set()
for u, v, data in graph.edges(data=True):
types.add(data.get('relationship', 'unknown'))
return sorted(list(types))
|