File size: 16,134 Bytes
fc68f79
 
 
 
 
 
 
bc527a4
30ec544
b049de2
a989e5c
 
 
bc527a4
708e0e9
 
 
 
 
b005e3f
8a0dd37
 
 
 
 
 
 
b005e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc68f79
b005e3f
 
 
 
 
fc68f79
b005e3f
 
35bf268
 
b005e3f
 
35bf268
b005e3f
 
 
 
 
 
 
 
 
bc527a4
fc68f79
8a0dd37
b005e3f
0391a70
fc68f79
0391a70
b005e3f
 
 
 
 
8a0dd37
b005e3f
 
 
0391a70
 
b005e3f
 
0391a70
 
b005e3f
8a0dd37
 
adad196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e697a
 
35bf268
a47ba5f
8a0dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a989e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791315
 
a989e5c
8a0dd37
 
5e3730c
 
 
 
 
35bf268
8560ee2
ec2bb77
8a0dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708e0e9
1a726f2
708e0e9
 
 
4b13fa7
 
 
708e0e9
 
 
 
 
8a0dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df11296
 
 
a989e5c
df11296
 
 
 
 
 
 
 
 
a989e5c
 
3791315
a989e5c
 
 
 
692d1fe
 
 
 
 
 
 
a989e5c
 
692d1fe
a989e5c
 
 
 
5d80dad
a989e5c
8a0dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adad196
ebf8650
 
 
8a0dd37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8560ee2
 
 
8a0dd37
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
from itertools import combinations
import re
from functools import cache
from io import StringIO
from yall import create_yall
import plotly.graph_objs as go
from huggingface_hub import ModelCard



def calculate_pages(df, items_per_page):
    return -(-len(df) // items_per_page)  # Equivalent to math.ceil(len(df) / items_per_page)

    

# Function to get model info from Hugging Face API using caching
@cache
def cached_model_info(api, model):
    try:
        return api.model_info(repo_id=str(model))
    except (RepositoryNotFoundError, RevisionNotFoundError):
        return None

# Function to get model info from DataFrame and update it with likes and tags
@st.cache
def get_model_info(df):
    api = HfApi()

    for index, row in df.iterrows():
        model_info = cached_model_info(api, row['Model'].strip())
        if model_info:
            df.loc[index, 'Likes'] = model_info.likes
            df.loc[index, 'Tags'] = ', '.join(model_info.tags)
        else:
            df.loc[index, 'Likes'] = -1
            df.loc[index, 'Tags'] = ''
    return df

# Function to convert markdown table to DataFrame and extract Hugging Face URLs
def convert_markdown_table_to_dataframe(md_content):
    """
    Converts markdown table to Pandas DataFrame, handling special characters and links,
    extracts Hugging Face URLs, and adds them to a new column.
    """
    # Remove leading and trailing | characters
    cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)

    # Create DataFrame from cleaned content
    df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')

    # Remove the first row after the header
    df = df.drop(0, axis=0)

    # Strip whitespace from column names
    df.columns = df.columns.str.strip()

    # Extract Hugging Face URLs and add them to a new column
    model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
    df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)

    # Clean Model column to have only the model link text
    df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))

    return df

@st.cache_data
def get_model_info(df):
    api = HfApi()

    # Initialize new columns for likes and tags
    df['Likes'] = None
    df['Tags'] = None

    # Iterate through DataFrame rows
    for index, row in df.iterrows():
        model = row['Model'].strip()
        try:
            model_info = api.model_info(repo_id=str(model))
            df.loc[index, 'Likes'] = model_info.likes
            df.loc[index, 'Tags'] = ', '.join(model_info.tags)

        except (RepositoryNotFoundError, RevisionNotFoundError):
            df.loc[index, 'Likes'] = -1
            df.loc[index, 'Tags'] = ''

    return df

#def calculate_highest_combined_score(data, column):
#    score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
#    # Ensure the column exists and has numeric data
#    if column not in data.columns or not pd.api.types.is_numeric_dtype(data[column]):
#        return column, {}
#    scores = data[column].dropna().tolist()
#    models = data['Model'].tolist()
#    top_combinations = {r: [] for r in range(2, 5)}
#    for r in range(2, 5):
#        for combination in combinations(zip(scores, models), r):
#            combined_score = sum(score for score, _ in combination)
#            top_combinations[r].append((combined_score, tuple(model for _, model in combination)))
#        top_combinations[r].sort(key=lambda x: x[0], reverse=True)
#        top_combinations[r] = top_combinations[r][:5]
#    return column, top_combinations

## Modified function to display the results of the highest combined scores using st.dataframe
#def display_highest_combined_scores(data):
#    score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
#    with st.spinner('Calculating highest combined scores...'):
#        results = [calculate_highest_combined_score(data, col) for col in score_columns]
#        for column, top_combinations in results:
#            st.subheader(f"Top Combinations for {column}")
#            for r, combinations in top_combinations.items():
#                # Prepare data for DataFrame
#                rows = [{'Score': score, 'Models': ', '.join(combination)} for score, combination in combinations]
#                df = pd.DataFrame(rows)
#                
#                # Display using st.dataframe
#                st.markdown(f"**Number of Models: {r}**")
#                st.dataframe(df, height=150)  # Adjust height as necessary

                    


# Function to create bar chart for a given category
def create_bar_chart(df, category):
    """Create and display a bar chart for a given category."""
    st.write(f"### {category} Scores")

    # Sort the DataFrame based on the category score
    sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)

    # Create the bar chart with a color gradient (using 'Viridis' color scale as an example)
    fig = go.Figure(go.Bar(
        x=sorted_df[category],
        y=sorted_df['Model'],
        orientation='h',
        marker=dict(color=sorted_df[category], colorscale='Spectral')  # You can change 'Viridis' to another color scale
    ))

    # Update layout for better readability
    fig.update_layout(
        margin=dict(l=20, r=20, t=20, b=20)
    )

    # Adjust the height of the chart based on the number of rows in the DataFrame
    st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)

def fetch_merge_configs(df):
    # Sort the DataFrame
    df_sorted = df.sort_values(by='Average', ascending=False).head(20)
    configurations = []
    matches = []

    # Get model cards for the top 20 entries
    for index, row in df_sorted.iterrows():
        model_name = row['Model'].rstrip()
        try:
            card = ModelCard.load(model_name)
            configurations.append({
                "Model Name": model_name,
                "Scores": row["Average"],
                "AGIEval": row["AGIEval"],
                "GPT4All": row["GPT4All"],
                "TruthfulQA": row["TruthfulQA"],
                "Bigbench": row["Bigbench"],
                "Model Card": str(card)
                })
            match = re.findall(r'yaml(.*?)```', str(card), re.DOTALL)
            if match:
                matches.append(match[0])
        except Exception as e:
            print(f"Failed to load model card for {model_name}. Error: {e}")

    csv_data = df.to_csv(index=False)
    return configurations, matches, csv_data  

# Main function to run the Streamlit app
def main():
    # Set page configuration and title
    st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")

    st.title("πŸ† YALL - Yet Another LLM Leaderboard")
    st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")

    # Create tabs for leaderboard and about section
    content = create_yall()
    tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])

    # Leaderboard tab
    with tab1:
        if content:
            try:
                score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']

                # Display dataframe
                full_df = convert_markdown_table_to_dataframe(content)

                for col in score_columns:
                    # Corrected use of pd.to_numeric
                    full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce')

                full_df = get_model_info(full_df)
                full_df['Tags'] = full_df['Tags'].fillna('')
                df = pd.DataFrame(columns=full_df.columns)

                # Toggles for filtering by tags
                show_phi = st.checkbox("Phi (2.8B)", value=True)
                show_mistral = st.checkbox("Mistral (7B)", value=True)
                show_other = st.checkbox("Other", value=True)

                # Create a DataFrame based on selected filters
                dfs_to_concat = []

                if show_phi:
                    dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')])
                if show_mistral:
                    dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')])
                if show_other:
                    other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')]
                    dfs_to_concat.append(other_df)

                # Concatenate the DataFrames
                if dfs_to_concat:
                    df = pd.concat(dfs_to_concat, ignore_index=True)

                # Add a search bar
                search_query = st.text_input("Search models", "")

                # Filter the DataFrame based on the search query
                if search_query:
                    df = df[df['Model'].str.contains(search_query, case=False)]

                # Add a selectbox for page selection
                items_per_page = 30
                pages = calculate_pages(df, items_per_page)
                page = st.selectbox("Page", list(range(1, pages + 1)))

                # Sort the DataFrame by 'Average' column in descending order
                df = df.sort_values(by='Average', ascending=False)

                # Slice the DataFrame based on the selected page
                start = (page - 1) * items_per_page
                end = start + items_per_page
                df = df[start:end]
                
                # Display the filtered DataFrame or the entire leaderboard
                st.dataframe(
                    df[['Model'] + score_columns + ['Likes', 'URL']],
                    use_container_width=True,
                    column_config={
                        "Likes": st.column_config.NumberColumn(
                            "Likes",
                            help="Number of likes on Hugging Face",
                            format="%d ❀️",
                        ),
                        "URL": st.column_config.LinkColumn("URL"),
                    },
                    hide_index=True,
                    height=len(df) * 37,
                )
                selected_models = st.multiselect('Select models to compare', df['Model'].unique())
                comparison_df = df[df['Model'].isin(selected_models)]
                st.dataframe(comparison_df)
                # Add a button to export data to CSV
                if st.button("Export to CSV"):
                    # Export the DataFrame to CSV
                    csv_data = df.to_csv(index=False)

                    # Create a link to download the CSV file
                    st.download_button(
                        label="Download CSV",
                        data=csv_data,
                        file_name="leaderboard.csv",
                        key="download-csv",
                        help="Click to download the CSV file",
                    )
                if st.button("Fetch Merge-Configs"):
                    # Call the function with the current DataFrame
                    configurations, matches, csv_data = fetch_merge_configs(full_df) # Assuming full_df is your DataFrame
                    # You can then display the configurations or matches as needed, or write them to a file
                    # For example, displaying the configurations:
                    for config in configurations:
                        st.text(f"Model Name: {config['Model Name']}\nScores: {config['Scores']}\nAGIEval: {config['AGIEval']}\nGPT4All: {config['GPT4All']}\nTruthfulQA: {config['TruthfulQA']}\nBigbench: {config['Bigbench']}\nModel Card: {config['Model Card']}\n\n")

                    # Convert the list of dictionaries to a DataFrame
                    configurations_df = pd.DataFrame(configurations)

                    # Convert the DataFrame to a CSV string
                    configurations_csv = configurations_df.to_csv(index=False)

                    st.download_button(
                        label="Download Configurations",
                        data=configurations_csv,
                        file_name="configurations.csv",
                        key="download-csv",
                        help="Click to download the CSV file",
                    )

                
                # Full-width plot for the first category
                create_bar_chart(df, score_columns[0])

                # Next two plots in two columns
                col1, col2 = st.columns(2)
                with col1:
                    create_bar_chart(df, score_columns[1])
                with col2:
                    create_bar_chart(df, score_columns[2])

                # Last two plots in two columns
                col3, col4 = st.columns(2)
                with col3:
                    create_bar_chart(df, score_columns[3])
                with col4:
                    create_bar_chart(df, score_columns[4])

#                display_highest_combined_scores(full_df)  # Call to display the calculated scores
            except Exception as e:
                st.error("An error occurred while processing the markdown table.")
                st.error(str(e))
        else:
            st.error("Failed to download the content from the URL provided.")
     # About tab
    with tab2:
        st.markdown('''
            ### Nous benchmark suite
            Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks:
            * [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
            * **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
            * [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
            * [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`
            ### Reproducibility
            You can easily reproduce these results using 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).
            ### Clone this space
            You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables:
            * Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126).
            * Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens))
            A special thanks to [gblazex](https://huggingface.co/gblazex) for providing many evaluations.
        ''')
        



# Run the main function if this script is run directly
if __name__ == "__main__":
    main()