Spaces:
Running
Running
File size: 16,134 Bytes
fc68f79 bc527a4 30ec544 b049de2 a989e5c bc527a4 708e0e9 b005e3f 8a0dd37 b005e3f fc68f79 b005e3f fc68f79 b005e3f 35bf268 b005e3f 35bf268 b005e3f bc527a4 fc68f79 8a0dd37 b005e3f 0391a70 fc68f79 0391a70 b005e3f 8a0dd37 b005e3f 0391a70 b005e3f 0391a70 b005e3f 8a0dd37 adad196 04e697a 35bf268 a47ba5f 8a0dd37 a989e5c 3791315 a989e5c 8a0dd37 5e3730c 35bf268 8560ee2 ec2bb77 8a0dd37 708e0e9 1a726f2 708e0e9 4b13fa7 708e0e9 8a0dd37 df11296 a989e5c df11296 a989e5c 3791315 a989e5c 692d1fe a989e5c 692d1fe a989e5c 5d80dad a989e5c 8a0dd37 adad196 ebf8650 8a0dd37 8560ee2 8a0dd37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import streamlit as st
import pandas as pd
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
from itertools import combinations
import re
from functools import cache
from io import StringIO
from yall import create_yall
import plotly.graph_objs as go
from huggingface_hub import ModelCard
def calculate_pages(df, items_per_page):
return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page)
# Function to get model info from Hugging Face API using caching
@cache
def cached_model_info(api, model):
try:
return api.model_info(repo_id=str(model))
except (RepositoryNotFoundError, RevisionNotFoundError):
return None
# Function to get model info from DataFrame and update it with likes and tags
@st.cache
def get_model_info(df):
api = HfApi()
for index, row in df.iterrows():
model_info = cached_model_info(api, row['Model'].strip())
if model_info:
df.loc[index, 'Likes'] = model_info.likes
df.loc[index, 'Tags'] = ', '.join(model_info.tags)
else:
df.loc[index, 'Likes'] = -1
df.loc[index, 'Tags'] = ''
return df
# Function to convert markdown table to DataFrame and extract Hugging Face URLs
def convert_markdown_table_to_dataframe(md_content):
"""
Converts markdown table to Pandas DataFrame, handling special characters and links,
extracts Hugging Face URLs, and adds them to a new column.
"""
# Remove leading and trailing | characters
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
# Create DataFrame from cleaned content
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
# Remove the first row after the header
df = df.drop(0, axis=0)
# Strip whitespace from column names
df.columns = df.columns.str.strip()
# Extract Hugging Face URLs and add them to a new column
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
# Clean Model column to have only the model link text
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
return df
@st.cache_data
def get_model_info(df):
api = HfApi()
# Initialize new columns for likes and tags
df['Likes'] = None
df['Tags'] = None
# Iterate through DataFrame rows
for index, row in df.iterrows():
model = row['Model'].strip()
try:
model_info = api.model_info(repo_id=str(model))
df.loc[index, 'Likes'] = model_info.likes
df.loc[index, 'Tags'] = ', '.join(model_info.tags)
except (RepositoryNotFoundError, RevisionNotFoundError):
df.loc[index, 'Likes'] = -1
df.loc[index, 'Tags'] = ''
return df
#def calculate_highest_combined_score(data, column):
# score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
# # Ensure the column exists and has numeric data
# if column not in data.columns or not pd.api.types.is_numeric_dtype(data[column]):
# return column, {}
# scores = data[column].dropna().tolist()
# models = data['Model'].tolist()
# top_combinations = {r: [] for r in range(2, 5)}
# for r in range(2, 5):
# for combination in combinations(zip(scores, models), r):
# combined_score = sum(score for score, _ in combination)
# top_combinations[r].append((combined_score, tuple(model for _, model in combination)))
# top_combinations[r].sort(key=lambda x: x[0], reverse=True)
# top_combinations[r] = top_combinations[r][:5]
# return column, top_combinations
## Modified function to display the results of the highest combined scores using st.dataframe
#def display_highest_combined_scores(data):
# score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
# with st.spinner('Calculating highest combined scores...'):
# results = [calculate_highest_combined_score(data, col) for col in score_columns]
# for column, top_combinations in results:
# st.subheader(f"Top Combinations for {column}")
# for r, combinations in top_combinations.items():
# # Prepare data for DataFrame
# rows = [{'Score': score, 'Models': ', '.join(combination)} for score, combination in combinations]
# df = pd.DataFrame(rows)
#
# # Display using st.dataframe
# st.markdown(f"**Number of Models: {r}**")
# st.dataframe(df, height=150) # Adjust height as necessary
# Function to create bar chart for a given category
def create_bar_chart(df, category):
"""Create and display a bar chart for a given category."""
st.write(f"### {category} Scores")
# Sort the DataFrame based on the category score
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)
# Create the bar chart with a color gradient (using 'Viridis' color scale as an example)
fig = go.Figure(go.Bar(
x=sorted_df[category],
y=sorted_df['Model'],
orientation='h',
marker=dict(color=sorted_df[category], colorscale='Spectral') # You can change 'Viridis' to another color scale
))
# Update layout for better readability
fig.update_layout(
margin=dict(l=20, r=20, t=20, b=20)
)
# Adjust the height of the chart based on the number of rows in the DataFrame
st.plotly_chart(fig, use_container_width=True, height=len(df) * 35)
def fetch_merge_configs(df):
# Sort the DataFrame
df_sorted = df.sort_values(by='Average', ascending=False).head(20)
configurations = []
matches = []
# Get model cards for the top 20 entries
for index, row in df_sorted.iterrows():
model_name = row['Model'].rstrip()
try:
card = ModelCard.load(model_name)
configurations.append({
"Model Name": model_name,
"Scores": row["Average"],
"AGIEval": row["AGIEval"],
"GPT4All": row["GPT4All"],
"TruthfulQA": row["TruthfulQA"],
"Bigbench": row["Bigbench"],
"Model Card": str(card)
})
match = re.findall(r'yaml(.*?)```', str(card), re.DOTALL)
if match:
matches.append(match[0])
except Exception as e:
print(f"Failed to load model card for {model_name}. Error: {e}")
csv_data = df.to_csv(index=False)
return configurations, matches, csv_data
# Main function to run the Streamlit app
def main():
# Set page configuration and title
st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
st.title("π YALL - Yet Another LLM Leaderboard")
st.markdown("Leaderboard made with π§ [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
# Create tabs for leaderboard and about section
content = create_yall()
tab1, tab2 = st.tabs(["π Leaderboard", "π About"])
# Leaderboard tab
with tab1:
if content:
try:
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
# Display dataframe
full_df = convert_markdown_table_to_dataframe(content)
for col in score_columns:
# Corrected use of pd.to_numeric
full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce')
full_df = get_model_info(full_df)
full_df['Tags'] = full_df['Tags'].fillna('')
df = pd.DataFrame(columns=full_df.columns)
# Toggles for filtering by tags
show_phi = st.checkbox("Phi (2.8B)", value=True)
show_mistral = st.checkbox("Mistral (7B)", value=True)
show_other = st.checkbox("Other", value=True)
# Create a DataFrame based on selected filters
dfs_to_concat = []
if show_phi:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')])
if show_mistral:
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')])
if show_other:
other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')]
dfs_to_concat.append(other_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
# Add a search bar
search_query = st.text_input("Search models", "")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Model'].str.contains(search_query, case=False)]
# Add a selectbox for page selection
items_per_page = 30
pages = calculate_pages(df, items_per_page)
page = st.selectbox("Page", list(range(1, pages + 1)))
# Sort the DataFrame by 'Average' column in descending order
df = df.sort_values(by='Average', ascending=False)
# Slice the DataFrame based on the selected page
start = (page - 1) * items_per_page
end = start + items_per_page
df = df[start:end]
# Display the filtered DataFrame or the entire leaderboard
st.dataframe(
df[['Model'] + score_columns + ['Likes', 'URL']],
use_container_width=True,
column_config={
"Likes": st.column_config.NumberColumn(
"Likes",
help="Number of likes on Hugging Face",
format="%d β€οΈ",
),
"URL": st.column_config.LinkColumn("URL"),
},
hide_index=True,
height=len(df) * 37,
)
selected_models = st.multiselect('Select models to compare', df['Model'].unique())
comparison_df = df[df['Model'].isin(selected_models)]
st.dataframe(comparison_df)
# Add a button to export data to CSV
if st.button("Export to CSV"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
if st.button("Fetch Merge-Configs"):
# Call the function with the current DataFrame
configurations, matches, csv_data = fetch_merge_configs(full_df) # Assuming full_df is your DataFrame
# You can then display the configurations or matches as needed, or write them to a file
# For example, displaying the configurations:
for config in configurations:
st.text(f"Model Name: {config['Model Name']}\nScores: {config['Scores']}\nAGIEval: {config['AGIEval']}\nGPT4All: {config['GPT4All']}\nTruthfulQA: {config['TruthfulQA']}\nBigbench: {config['Bigbench']}\nModel Card: {config['Model Card']}\n\n")
# Convert the list of dictionaries to a DataFrame
configurations_df = pd.DataFrame(configurations)
# Convert the DataFrame to a CSV string
configurations_csv = configurations_df.to_csv(index=False)
st.download_button(
label="Download Configurations",
data=configurations_csv,
file_name="configurations.csv",
key="download-csv",
help="Click to download the CSV file",
)
# Full-width plot for the first category
create_bar_chart(df, score_columns[0])
# Next two plots in two columns
col1, col2 = st.columns(2)
with col1:
create_bar_chart(df, score_columns[1])
with col2:
create_bar_chart(df, score_columns[2])
# Last two plots in two columns
col3, col4 = st.columns(2)
with col3:
create_bar_chart(df, score_columns[3])
with col4:
create_bar_chart(df, score_columns[4])
# display_highest_combined_scores(full_df) # Call to display the calculated scores
except Exception as e:
st.error("An error occurred while processing the markdown table.")
st.error(str(e))
else:
st.error("Failed to download the content from the URL provided.")
# About tab
with tab2:
st.markdown('''
### Nous benchmark suite
Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks:
* [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
* **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
* [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
* [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`
### Reproducibility
You can easily reproduce these results using π§ [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).
### Clone this space
You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables:
* Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126).
* Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens))
A special thanks to [gblazex](https://huggingface.co/gblazex) for providing many evaluations.
''')
# Run the main function if this script is run directly
if __name__ == "__main__":
main()
|