Spaces:
Running
Running
File size: 13,007 Bytes
b72ab63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import operator
from fontTools.cu2qu import curve_to_quadratic, curves_to_quadratic
from fontTools.pens.basePen import decomposeSuperBezierSegment
from fontTools.pens.filterPen import FilterPen
from fontTools.pens.reverseContourPen import ReverseContourPen
from fontTools.pens.pointPen import BasePointToSegmentPen
from fontTools.pens.pointPen import ReverseContourPointPen
class Cu2QuPen(FilterPen):
"""A filter pen to convert cubic bezier curves to quadratic b-splines
using the FontTools SegmentPen protocol.
Args:
other_pen: another SegmentPen used to draw the transformed outline.
max_err: maximum approximation error in font units. For optimal results,
if you know the UPEM of the font, we recommend setting this to a
value equal, or close to UPEM / 1000.
reverse_direction: flip the contours' direction but keep starting point.
stats: a dictionary counting the point numbers of quadratic segments.
all_quadratic: if True (default), only quadratic b-splines are generated.
if False, quadratic curves or cubic curves are generated depending
on which one is more economical.
"""
def __init__(
self,
other_pen,
max_err,
reverse_direction=False,
stats=None,
all_quadratic=True,
):
if reverse_direction:
other_pen = ReverseContourPen(other_pen)
super().__init__(other_pen)
self.max_err = max_err
self.stats = stats
self.all_quadratic = all_quadratic
def _convert_curve(self, pt1, pt2, pt3):
curve = (self.current_pt, pt1, pt2, pt3)
result = curve_to_quadratic(curve, self.max_err, self.all_quadratic)
if self.stats is not None:
n = str(len(result) - 2)
self.stats[n] = self.stats.get(n, 0) + 1
if self.all_quadratic:
self.qCurveTo(*result[1:])
else:
if len(result) == 3:
self.qCurveTo(*result[1:])
else:
assert len(result) == 4
super().curveTo(*result[1:])
def curveTo(self, *points):
n = len(points)
if n == 3:
# this is the most common case, so we special-case it
self._convert_curve(*points)
elif n > 3:
for segment in decomposeSuperBezierSegment(points):
self._convert_curve(*segment)
else:
self.qCurveTo(*points)
class Cu2QuPointPen(BasePointToSegmentPen):
"""A filter pen to convert cubic bezier curves to quadratic b-splines
using the FontTools PointPen protocol.
Args:
other_point_pen: another PointPen used to draw the transformed outline.
max_err: maximum approximation error in font units. For optimal results,
if you know the UPEM of the font, we recommend setting this to a
value equal, or close to UPEM / 1000.
reverse_direction: reverse the winding direction of all contours.
stats: a dictionary counting the point numbers of quadratic segments.
all_quadratic: if True (default), only quadratic b-splines are generated.
if False, quadratic curves or cubic curves are generated depending
on which one is more economical.
"""
__points_required = {
"move": (1, operator.eq),
"line": (1, operator.eq),
"qcurve": (2, operator.ge),
"curve": (3, operator.eq),
}
def __init__(
self,
other_point_pen,
max_err,
reverse_direction=False,
stats=None,
all_quadratic=True,
):
BasePointToSegmentPen.__init__(self)
if reverse_direction:
self.pen = ReverseContourPointPen(other_point_pen)
else:
self.pen = other_point_pen
self.max_err = max_err
self.stats = stats
self.all_quadratic = all_quadratic
def _flushContour(self, segments):
assert len(segments) >= 1
closed = segments[0][0] != "move"
new_segments = []
prev_points = segments[-1][1]
prev_on_curve = prev_points[-1][0]
for segment_type, points in segments:
if segment_type == "curve":
for sub_points in self._split_super_bezier_segments(points):
on_curve, smooth, name, kwargs = sub_points[-1]
bcp1, bcp2 = sub_points[0][0], sub_points[1][0]
cubic = [prev_on_curve, bcp1, bcp2, on_curve]
quad = curve_to_quadratic(cubic, self.max_err, self.all_quadratic)
if self.stats is not None:
n = str(len(quad) - 2)
self.stats[n] = self.stats.get(n, 0) + 1
new_points = [(pt, False, None, {}) for pt in quad[1:-1]]
new_points.append((on_curve, smooth, name, kwargs))
if self.all_quadratic or len(new_points) == 2:
new_segments.append(["qcurve", new_points])
else:
new_segments.append(["curve", new_points])
prev_on_curve = sub_points[-1][0]
else:
new_segments.append([segment_type, points])
prev_on_curve = points[-1][0]
if closed:
# the BasePointToSegmentPen.endPath method that calls _flushContour
# rotates the point list of closed contours so that they end with
# the first on-curve point. We restore the original starting point.
new_segments = new_segments[-1:] + new_segments[:-1]
self._drawPoints(new_segments)
def _split_super_bezier_segments(self, points):
sub_segments = []
# n is the number of control points
n = len(points) - 1
if n == 2:
# a simple bezier curve segment
sub_segments.append(points)
elif n > 2:
# a "super" bezier; decompose it
on_curve, smooth, name, kwargs = points[-1]
num_sub_segments = n - 1
for i, sub_points in enumerate(
decomposeSuperBezierSegment([pt for pt, _, _, _ in points])
):
new_segment = []
for point in sub_points[:-1]:
new_segment.append((point, False, None, {}))
if i == (num_sub_segments - 1):
# the last on-curve keeps its original attributes
new_segment.append((on_curve, smooth, name, kwargs))
else:
# on-curves of sub-segments are always "smooth"
new_segment.append((sub_points[-1], True, None, {}))
sub_segments.append(new_segment)
else:
raise AssertionError("expected 2 control points, found: %d" % n)
return sub_segments
def _drawPoints(self, segments):
pen = self.pen
pen.beginPath()
last_offcurves = []
points_required = self.__points_required
for i, (segment_type, points) in enumerate(segments):
if segment_type in points_required:
n, op = points_required[segment_type]
assert op(len(points), n), (
f"illegal {segment_type!r} segment point count: "
f"expected {n}, got {len(points)}"
)
offcurves = points[:-1]
if i == 0:
# any off-curve points preceding the first on-curve
# will be appended at the end of the contour
last_offcurves = offcurves
else:
for pt, smooth, name, kwargs in offcurves:
pen.addPoint(pt, None, smooth, name, **kwargs)
pt, smooth, name, kwargs = points[-1]
if pt is None:
assert segment_type == "qcurve"
# special quadratic contour with no on-curve points:
# we need to skip the "None" point. See also the Pen
# protocol's qCurveTo() method and fontTools.pens.basePen
pass
else:
pen.addPoint(pt, segment_type, smooth, name, **kwargs)
else:
raise AssertionError("unexpected segment type: %r" % segment_type)
for pt, smooth, name, kwargs in last_offcurves:
pen.addPoint(pt, None, smooth, name, **kwargs)
pen.endPath()
def addComponent(self, baseGlyphName, transformation):
assert self.currentPath is None
self.pen.addComponent(baseGlyphName, transformation)
class Cu2QuMultiPen:
"""A filter multi-pen to convert cubic bezier curves to quadratic b-splines
in a interpolation-compatible manner, using the FontTools SegmentPen protocol.
Args:
other_pens: list of SegmentPens used to draw the transformed outlines.
max_err: maximum approximation error in font units. For optimal results,
if you know the UPEM of the font, we recommend setting this to a
value equal, or close to UPEM / 1000.
reverse_direction: flip the contours' direction but keep starting point.
This pen does not follow the normal SegmentPen protocol. Instead, its
moveTo/lineTo/qCurveTo/curveTo methods take a list of tuples that are
arguments that would normally be passed to a SegmentPen, one item for
each of the pens in other_pens.
"""
# TODO Simplify like 3e8ebcdce592fe8a59ca4c3a294cc9724351e1ce
# Remove start_pts and _add_moveTO
def __init__(self, other_pens, max_err, reverse_direction=False):
if reverse_direction:
other_pens = [
ReverseContourPen(pen, outputImpliedClosingLine=True)
for pen in other_pens
]
self.pens = other_pens
self.max_err = max_err
self.start_pts = None
self.current_pts = None
def _check_contour_is_open(self):
if self.current_pts is None:
raise AssertionError("moveTo is required")
def _check_contour_is_closed(self):
if self.current_pts is not None:
raise AssertionError("closePath or endPath is required")
def _add_moveTo(self):
if self.start_pts is not None:
for pt, pen in zip(self.start_pts, self.pens):
pen.moveTo(*pt)
self.start_pts = None
def moveTo(self, pts):
self._check_contour_is_closed()
self.start_pts = self.current_pts = pts
self._add_moveTo()
def lineTo(self, pts):
self._check_contour_is_open()
self._add_moveTo()
for pt, pen in zip(pts, self.pens):
pen.lineTo(*pt)
self.current_pts = pts
def qCurveTo(self, pointsList):
self._check_contour_is_open()
if len(pointsList[0]) == 1:
self.lineTo([(points[0],) for points in pointsList])
return
self._add_moveTo()
current_pts = []
for points, pen in zip(pointsList, self.pens):
pen.qCurveTo(*points)
current_pts.append((points[-1],))
self.current_pts = current_pts
def _curves_to_quadratic(self, pointsList):
curves = []
for current_pt, points in zip(self.current_pts, pointsList):
curves.append(current_pt + points)
quadratics = curves_to_quadratic(curves, [self.max_err] * len(curves))
pointsList = []
for quadratic in quadratics:
pointsList.append(quadratic[1:])
self.qCurveTo(pointsList)
def curveTo(self, pointsList):
self._check_contour_is_open()
self._curves_to_quadratic(pointsList)
def closePath(self):
self._check_contour_is_open()
if self.start_pts is None:
for pen in self.pens:
pen.closePath()
self.current_pts = self.start_pts = None
def endPath(self):
self._check_contour_is_open()
if self.start_pts is None:
for pen in self.pens:
pen.endPath()
self.current_pts = self.start_pts = None
def addComponent(self, glyphName, transformations):
self._check_contour_is_closed()
for trans, pen in zip(transformations, self.pens):
pen.addComponent(glyphName, trans)
|