Spaces:
Sleeping
Sleeping
File size: 23,560 Bytes
80f4262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import os
import json
import random
import colorsys
import re
import subprocess
import sys
from typing import Dict, Any, Optional, Tuple
from pathlib import Path
import requests
# CRITICAL: Enable MCP server mode
os.environ["GRADIO_MCP_SERVER"] = "True"
# Model API configuration for CSS to theme conversion
AVAILABLE_MODELS = {
"qwen": {
"hf_model": "Qwen/Qwen2.5-Coder-7B",
"nebius_model": "Qwen/Qwen2.5-Coder-7B",
"name": "Qwen2.5-Coder-7B",
},
"llama": {
"hf_model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"nebius_model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"name": "Meta-Llama-3.1-8B-Instruct",
},
}
# Nebius Studio API configuration
NEBIUS_API_URL = "https://api.studio.nebius.ai/v1/chat/completions"
def setup_package() -> Dict[str, Any]:
"""
Install and verify the gradio-themer package is available and working.
Returns:
Dict[str, Any]: Status information about package installation
"""
try:
# Test import to verify package is available
from gradio_themer import GradioThemer
return {
"status": "success",
"message": "β
gradio-themer package is installed and working",
"package_info": {
"name": "gradio_themer",
"class": "GradioThemer",
"version": "0.1.0",
},
"usage_example": """
import gradio as gr
from gradio_themer import GradioThemer
with gr.Blocks() as demo:
themer = GradioThemer(label="Theme Selector")
themer.change(fn=handle_theme_change, inputs=[themer])
""",
}
except ImportError as e:
return {
"status": "error",
"message": f"β gradio-themer package not found: {str(e)}",
"solution": "Install with: pip install gradio-themer",
}
except Exception as e:
return {"status": "error", "message": f"β Error testing package: {str(e)}"}
def generate_theme(
theme_name: str,
primary_color: str = "#3b82f6",
theme_style: str = "light",
accent_color: Optional[str] = None,
) -> Dict[str, Any]:
"""
Generate a complete theme JSON configuration with intelligent color harmonies.
Args:
theme_name (str): Name for the new theme
primary_color (str): Primary color in hex format (e.g., "#3b82f6")
theme_style (str): Theme style - "light", "dark", or "auto"
accent_color (Optional[str]): Optional accent color, auto-generated if not provided
Returns:
Dict[str, Any]: Complete theme configuration ready for use
"""
try:
# Generate intelligent color palette based on primary color
colors = _generate_color_palette(primary_color, theme_style, accent_color)
# Create theme configuration
theme_config = {
theme_name.lower().replace(" ", "_"): {
"name": theme_name,
"colors": colors,
"background": colors["base-200"],
"style": theme_style,
"generated": True,
"font": {
"family": "Inter",
"type": "google_font",
"name": "Inter",
},
}
}
return {
"status": "success",
"message": f"β
Generated theme '{theme_name}' with {theme_style} style",
"theme_config": theme_config,
"usage_instructions": f"""
1. Save this JSON to your user_themes.json file
2. Use in your Gradio app:
themer = GradioThemer(
value={{"currentTheme": "{theme_name.lower().replace(' ', '_')}"}},
theme_config_path="user_themes.json"
)
""",
"color_info": {
"primary": colors["primary"],
"background": colors["base-200"],
"text": colors["base-content"],
"accent": colors["accent"],
},
}
except Exception as e:
return {
"status": "error",
"message": f"β Error generating theme: {str(e)}",
"suggestion": "Check that primary_color is in valid hex format (e.g., '#3b82f6')",
}
def convert_css_to_theme(
css_input: str,
theme_name: str = "converted_theme",
user_token: str = "",
model_choice: str = "qwen",
) -> str:
"""
Convert CSS styles or style descriptions into standardized theme JSON format using HF hosted LLM.
Args:
css_input (str): CSS code or natural language style description
theme_name (str): Name for the converted theme
user_token (str): Optional Nebius API token for better performance
model_choice (str): AI model to use ("qwen" or "llama")
Returns:
str: JSON string of converted theme configuration
"""
if not css_input.strip():
return json.dumps(
{
"status": "error",
"message": "Please provide CSS code or describe your desired style.",
},
indent=2,
)
try:
# Create the prompt with schema definition
SCHEMA = """{
"themes": {
"generated_theme": {
"name": "Generated Theme",
"colors": {
"base-100": "#ffffff",
"base-200": "#f8fafc",
"base-300": "#e2e8f0",
"base-content": "#1e293b",
"primary": "#3b82f6",
"primary-content": "#ffffff",
"secondary": "#64748b",
"secondary-content": "#ffffff",
"accent": "#f59e0b",
"accent-content": "#000000",
"neutral": "#374151",
"neutral-content": "#ffffff",
"error": "#ef4444",
"error-content": "#ffffff"
},
"background": "#f1f5f9",
"font": {
"family": "Inter",
"type": "google_font",
"name": "Inter"
}
}
}
}"""
ALPACA_PROMPT = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Convert the provided CSS code or style description into a JSON theme configuration that follows the exact schema structure. Extract colors from CSS variables, class names, or generate appropriate colors based on the description. Return ONLY valid JSON that matches the schema format.
Expected JSON Schema:
{schema}
### Input:
{input_text}
### Response:
"""
prompt = ALPACA_PROMPT.format(schema=SCHEMA, input_text=css_input)
# Use the AI API to convert CSS to theme
result = _query_ai_api(prompt, user_token, model_choice)
# Process the AI response
generated_text = ""
if user_token and user_token.strip():
# Handle Nebius API response (OpenAI format)
if isinstance(result, dict):
if "error" in result or "detail" in result:
error_msg = result.get(
"error", result.get("detail", "Unknown error")
)
if (
"authentication" in str(error_msg).lower()
or "unauthorized" in str(error_msg).lower()
):
return json.dumps(
{
"status": "error",
"message": "β Invalid Nebius API token provided. Please check your Nebius API key.",
},
indent=2,
)
else:
return json.dumps(
{
"status": "error",
"message": f"β Nebius API error: {error_msg}",
},
indent=2,
)
elif "choices" in result and len(result["choices"]) > 0:
generated_text = (
result["choices"][0].get("message", {}).get("content", "")
)
else:
return json.dumps(
{
"status": "error",
"message": f"β Unexpected Nebius API response format",
},
indent=2,
)
else:
# Handle HuggingFace Zero API response
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
elif isinstance(result, dict):
if "error" in result:
if "loading" in result["error"].lower():
return json.dumps(
{
"status": "error",
"message": f"π Model is still loading on HuggingFace servers. Please try again in a few moments.",
},
indent=2,
)
else:
return json.dumps(
{
"status": "error",
"message": f"β HuggingFace API error: {result['error']}",
},
indent=2,
)
generated_text = result.get("generated_text", "")
if not generated_text:
return json.dumps(
{
"status": "error",
"message": "β No response generated. Please try again or rephrase your request.",
},
indent=2,
)
# Clean up and extract JSON from response
json_part = _extract_json_from_response(generated_text)
if json_part.startswith("β"):
return json.dumps({"status": "error", "message": json_part}, indent=2)
# Try to parse and validate the JSON
try:
parsed_json = json.loads(json_part)
# Ensure proper structure
if "themes" in parsed_json:
for theme_key, theme_data in parsed_json["themes"].items():
if "background" not in theme_data:
theme_data["background"] = theme_data.get("colors", {}).get(
"base-100", "#ffffff"
)
if "font" not in theme_data:
theme_data["font"] = {
"family": "Inter",
"type": "google_font",
"name": "Inter",
}
return json.dumps(parsed_json, indent=2)
except json.JSONDecodeError as e:
return json.dumps(
{
"status": "error",
"message": f"β AI model generated invalid JSON. Please try rephrasing your request.\n\nError: {str(e)}",
},
indent=2,
)
except Exception as e:
return json.dumps(
{
"status": "error",
"message": f"β Error converting CSS to theme: {str(e)}",
},
indent=2,
)
def generate_app_code(
theme_names: str = "ocean_breeze,sunset_orange",
app_title: str = "My Themed App",
include_components: str = "button,textbox,slider",
) -> str:
"""
Generate complete Gradio application code with integrated theming system.
Args:
theme_names (str): Comma-separated list of theme names to include
app_title (str): Title for the generated application
include_components (str): Comma-separated list of components to include
Returns:
str: Complete Python code for a themed Gradio application
"""
try:
# Parse input parameters
themes = [t.strip() for t in theme_names.split(",") if t.strip()]
components = [
c.strip().lower() for c in include_components.split(",") if c.strip()
]
# Generate the complete app code
app_code = f'''"""
{app_title}
A themed Gradio application generated with gradio-themer
"""
import gradio as gr
from gradio_themer import GradioThemer
import json
def handle_theme_change(theme_data):
"""Handle theme changes from the GradioThemer component"""
print(f"Theme changed to: {{theme_data.get('currentTheme', 'default')}}")
return theme_data
# Custom CSS for enhanced styling
custom_css = """
.theme-container {{
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
}}
.section {{
margin-bottom: 2rem;
padding: 1.5rem;
border-radius: 8px;
border: 1px solid #e2e8f0;
background: #fafafa;
}}
"""
# Build the {app_title}
with gr.Blocks(css=custom_css, title="{app_title}") as demo:
# Header
with gr.Column(elem_classes="theme-container"):
gr.Markdown("# {app_title}")
gr.Markdown("**Powered by gradio-themer** - Dynamic theme system")
# Theme Controller
themer = GradioThemer(
value={{
"currentTheme": "{themes[0] if themes else 'ocean_breeze'}",
"type": "custom",
"removeBorders": True
}},
label="π¨ Theme Selector",
theme_config_path="user_themes.json"
)
# Main content sections
with gr.Column(elem_classes="theme-container"):
'''
# Add components based on user selection
if "button" in components:
app_code += """
# Button demonstration
with gr.Column(elem_classes="section"):
gr.Markdown("### Button Components")
with gr.Row():
btn_primary = gr.Button("Primary Action", variant="primary")
btn_secondary = gr.Button("Secondary Action", variant="secondary")
btn_stop = gr.Button("Stop Action", variant="stop")
"""
if "textbox" in components:
app_code += """
# Text input demonstration
with gr.Column(elem_classes="section"):
gr.Markdown("### Text Input Components")
text_input = gr.Textbox(
label="Enter your text",
placeholder="Type something here...",
lines=3
)
text_output = gr.Textbox(label="Output", interactive=False)
"""
if "slider" in components:
app_code += """
# Slider demonstration
with gr.Column(elem_classes="section"):
gr.Markdown("### Slider Components")
slider_value = gr.Slider(
minimum=0,
maximum=100,
value=50,
label="Adjust Value"
)
slider_output = gr.Number(label="Current Value", value=50)
"""
if "dropdown" in components:
app_code += """
# Dropdown demonstration
with gr.Column(elem_classes="section"):
gr.Markdown("### Selection Components")
dropdown = gr.Dropdown(
choices=["Option 1", "Option 2", "Option 3"],
label="Choose an option",
value="Option 1"
)
radio = gr.Radio(
choices=["Choice A", "Choice B", "Choice C"],
label="Select one",
value="Choice A"
)
"""
# Add event handlers
app_code += """
# Event handlers
themer.change(fn=handle_theme_change, inputs=[themer])
"""
# Add simple interactions if textbox is included
if "textbox" in components:
app_code += """ # Simple text processing
def process_text(text):
return f"Processed: {text.upper()}"
text_input.change(fn=process_text, inputs=[text_input], outputs=[text_output])
"""
# Add slider interaction if slider is included
if "slider" in components:
app_code += """ # Slider value update
slider_value.change(fn=lambda x: x, inputs=[slider_value], outputs=[slider_output])
"""
# Launch configuration
app_code += """
# Launch the application
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)
"""
return app_code
except Exception as e:
return f"""# Error generating app code
# {str(e)}
import gradio as gr
with gr.Blocks(title="Error") as demo:
gr.Markdown("β Failed to generate app code. Please check your parameters.")
if __name__ == "__main__":
demo.launch()
"""
# Helper functions for theme generation and API calls
def _generate_color_palette(
primary_color: str, style: str, accent_color: Optional[str] = None
) -> Dict[str, str]:
"""Generate a complete color palette based on primary color and style"""
try:
# Convert primary color to RGB for calculations
rgb = _hex_to_rgb(primary_color)
hsl = _rgb_to_hsl(rgb)
# Generate base colors based on style
if style == "dark":
base_100 = "#1a1a1a"
base_200 = "#2d2d2d"
base_300 = "#404040"
base_content = "#ffffff"
else: # light style
base_100 = "#ffffff"
base_200 = "#f8fafc"
base_300 = "#e2e8f0"
base_content = "#1e293b"
# Generate accent color if not provided
if not accent_color:
accent_color = _generate_complementary_color(primary_color, 0.1)
# Generate secondary color (triadic)
secondary_color = _generate_triadic_color(primary_color)
# Create complete color palette
colors = {
"base-100": base_100,
"base-200": base_200,
"base-300": base_300,
"base-content": base_content,
"primary": primary_color,
"primary-content": "#ffffff" if style == "light" else "#000000",
"secondary": secondary_color,
"secondary-content": "#ffffff",
"accent": accent_color,
"accent-content": "#ffffff",
"neutral": "#374151",
"neutral-content": "#ffffff",
"error": "#ef4444",
"error-content": "#ffffff",
}
return colors
except Exception:
# Fallback to default colors
return {
"base-100": "#ffffff",
"base-200": "#f8fafc",
"base-300": "#e2e8f0",
"base-content": "#1e293b",
"primary": primary_color,
"primary-content": "#ffffff",
"secondary": "#64748b",
"secondary-content": "#ffffff",
"accent": "#f59e0b",
"accent-content": "#000000",
"neutral": "#374151",
"neutral-content": "#ffffff",
"error": "#ef4444",
"error-content": "#ffffff",
}
def _query_ai_api(prompt: str, user_token: str = "", model_choice: str = "qwen"):
"""Query AI API - Use Nebius if token provided, otherwise HF Zero inference"""
model_config = AVAILABLE_MODELS.get(model_choice, AVAILABLE_MODELS["qwen"])
if user_token and user_token.strip():
# Use Nebius Studio API with provided token
headers = {
"Authorization": f"Bearer {user_token.strip()}",
"Content-Type": "application/json",
}
payload = {
"model": model_config["nebius_model"],
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 1000,
"temperature": 0.3,
"top_p": 0.9,
}
response = requests.post(NEBIUS_API_URL, headers=headers, json=payload)
return response.json()
else:
# Use HuggingFace Zero Inference API (no token required)
hf_inference_url = (
f"https://api-inference.huggingface.co/models/{model_config['hf_model']}"
)
headers = {"Content-Type": "application/json"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"temperature": 0.3,
"top_p": 0.9,
"do_sample": True,
"return_full_text": False,
},
}
response = requests.post(hf_inference_url, headers=headers, json=payload)
return response.json()
def _extract_json_from_response(generated_text: str) -> str:
"""Extract and clean JSON from AI response"""
json_part = generated_text.strip()
# Handle the case where AI returns explanation + JSON
if "Here is the JSON theme configuration" in json_part:
json_start = json_part.find("{")
if json_start != -1:
json_part = json_part[json_start:]
# Remove code block markers
if json_part.startswith("```json"):
json_part = json_part[7:]
elif json_part.startswith("```"):
json_part = json_part[3:]
if json_part.endswith("```"):
json_part = json_part[:-3]
json_part = json_part.strip()
# Find the first { and last } to extract clean JSON
start_idx = json_part.find("{")
if start_idx == -1:
return f"β No valid JSON found in response.\n\n**Raw response:**\n{generated_text}"
# Find the matching closing brace
brace_count = 0
end_idx = -1
for i in range(start_idx, len(json_part)):
if json_part[i] == "{":
brace_count += 1
elif json_part[i] == "}":
brace_count -= 1
if brace_count == 0:
end_idx = i + 1
break
if end_idx == -1:
return f"β Incomplete JSON found.\n\n**Raw response:**\n{generated_text}"
return json_part[start_idx:end_idx]
def _hex_to_rgb(hex_color: str) -> Tuple[int, int, int]:
"""Convert hex color to RGB tuple"""
hex_color = hex_color.lstrip("#")
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
def _rgb_to_hsl(rgb: Tuple[int, int, int]) -> Tuple[float, float, float]:
"""Convert RGB to HSL"""
r, g, b = [x / 255.0 for x in rgb]
return colorsys.rgb_to_hls(r, g, b)
def _hsl_to_rgb(hsl: Tuple[float, float, float]) -> Tuple[int, int, int]:
"""Convert HSL to RGB"""
h, l, s = hsl
r, g, b = colorsys.hls_to_rgb(h, l, s)
return tuple(int(x * 255) for x in (r, g, b))
def _rgb_to_hex(rgb: Tuple[int, int, int]) -> str:
"""Convert RGB tuple to hex color"""
return f"#{rgb[0]:02x}{rgb[1]:02x}{rgb[2]:02x}"
def _generate_complementary_color(base_color: str, lightness_adjust: float = 0) -> str:
"""Generate complementary color"""
try:
rgb = _hex_to_rgb(base_color)
h, l, s = _rgb_to_hsl(rgb)
# Shift hue by 180 degrees for complementary
comp_h = (h + 0.5) % 1.0
comp_l = max(0, min(1, l + lightness_adjust))
comp_rgb = _hsl_to_rgb((comp_h, comp_l, s))
return _rgb_to_hex(comp_rgb)
except:
return "#f59e0b" # Fallback color
def _generate_triadic_color(base_color: str) -> str:
"""Generate triadic color (120 degrees hue shift)"""
try:
rgb = _hex_to_rgb(base_color)
h, l, s = _rgb_to_hsl(rgb)
# Shift hue by 120 degrees for triadic
triadic_h = (h + 0.33) % 1.0
triadic_rgb = _hsl_to_rgb((triadic_h, l, s))
return _rgb_to_hex(triadic_rgb)
except:
return "#64748b" # Fallback color
|