File size: 6,906 Bytes
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be3665d
bf0a127
be3665d
 
 
 
 
 
 
 
 
 
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be3665d
bf0a127
be3665d
 
 
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
be3665d
bf0a127
be3665d
bf0a127
 
 
 
 
4b171b5
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f5cc2
7e45b79
 
be3665d
82f5cc2
be3665d
4389786
82f5cc2
be3665d
 
82f5cc2
78e14e1
82f5cc2
be3665d
 
 
 
bf0a127
ed2ee73
 
 
be3665d
1c06304
bf0a127
 
 
 
be3665d
bf0a127
be3665d
bf0a127
 
be3665d
bf0a127
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys, os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import openai

# openai.log = "debug"
openai.api_base = "https://api.chatanywhere.com.cn/v1"


# 非流式响应

def gpt_35_api(gptkey, message):
    openai.api_key = "sk-" + gptkey
    completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": message}])
    return completion.choices[0].message.content

net_g = None


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, key, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
    global net_g
    message = gpt_35_api(key, text)
    print(message)
    bert, phones, tones, lang_ids = get_text(message, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio

def tts_fn(text, key, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    with torch.no_grad():
        audio = infer(text, key,sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
    return "Success", (hps.data.sampling_rate, audio)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_dir", default="./logs/Ava/G_14300.pth", help="path of your model")
    parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
    parser.add_argument("--share", default=False, help="make link public")
    parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config_dir)
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    '''
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    '''
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column():
                gr.Markdown(value="""
                # 【AI向晚】在线语音对话版(Bert-Vits2 + gpt)
                ![avatar](./ava.png)
                对话内容基于gpt生成,由于接口转发,生成可能需要2分钟!\n
                作者:Xz乔希 https://space.bilibili.com/5859321\n
                集成作者:碎语碎念 https://space.bilibili.com/4269384\n
                声音归属:向晚大魔王 https://space.bilibili.com/672346917\n
                Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
                GPT_API_free项目:https://github.com/chatanywhere/GPT_API_free\n
                本项目中的apiKey可以从上面的项目免费获取(本项目默认提供了一个,如果没法用了去仓库申请替换就好啦)!\n
                使用本模型请严格遵守法律法规!\n
                发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n                
                """)
                text = gr.TextArea(label="要对向晚说什么呢", placeholder="Input Text Here",
                                   value="虚拟主播是什么?")
                key = gr.Text(label="GPT Key", placeholder="请输入上面提示中获取的gpt key",
                                  value="izlrijShDu7tp2rIgvYfibcC2J0Eh3uWfdm9ndrxN5nWrL96")
                speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
                sdp_ratio = gr.Slider(minimum=0.1, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比')
                noise_scale = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.01, label='感情调节')
                noise_scale_w = gr.Slider(minimum=0.1, maximum=1, value=0.9, step=0.01, label='音素长度')
                length_scale = gr.Slider(minimum=0.1, maximum=2, value=1.1, step=0.01, label='生成长度')
                btn = gr.Button("点击生成", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="Message")
                audio_output = gr.Audio(label="Output Audio")
        btn.click(tts_fn,
                inputs=[text, key, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
                outputs=[text_output, audio_output])

#    webbrowser.open("http://127.0.0.1:6006")
#    app.launch(server_port=6006, show_error=True)

    app.launch(show_error=True)