Spaces:
Sleeping
Sleeping
File size: 18,009 Bytes
d5b9a02 37edaf0 d5b9a02 2d7ebae d5b9a02 2d7ebae 6046e11 d5b9a02 37edaf0 875d07e 37edaf0 6046e11 d5b9a02 37edaf0 875d07e 37edaf0 e660b38 37edaf0 e660b38 d5b9a02 37edaf0 7c5a246 d5b9a02 7c5a246 d5b9a02 774a6a3 e660b38 774a6a3 e660b38 774a6a3 6046e11 774a6a3 e660b38 6046e11 774a6a3 e660b38 774a6a3 6046e11 d5b9a02 99f3982 6046e11 d5b9a02 6046e11 99f3982 6046e11 99f3982 6046e11 99f3982 6046e11 99f3982 2d7ebae 6046e11 d5b9a02 6046e11 d5b9a02 6046e11 d5b9a02 9a94a21 d5b9a02 9a94a21 d5b9a02 9a94a21 d5b9a02 7c5a246 d5b9a02 7c5a246 d5b9a02 7c5a246 d5b9a02 d35bbe4 d5b9a02 2d7ebae d5b9a02 7c5a246 d5b9a02 7c5a246 d5b9a02 7c5a246 d5b9a02 7c5a246 d5b9a02 7c5a246 e660b38 d5b9a02 37edaf0 584d800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import gradio as gr
import groq
import os
import tempfile
import uuid
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import fitz # PyMuPDF
import base64
from PIL import Image
import io
import requests
import json
# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_finance"
if not os.path.exists(FAISS_INDEX_DIR):
os.makedirs(FAISS_INDEX_DIR)
# Dictionary to store user-specific vectorstores
user_vectorstores = {}
# Custom CSS for Finance theme
custom_css = """
:root {
--primary-color: #FFD700; /* Gold */
--secondary-color: #008000; /* Dark Green */
--light-background: #F0FFF0; /* Honeydew */
--dark-text: #333333;
--white: #FFFFFF;
--border-color: #E5E7EB;
}
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--dark-text) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.stats-box { background-color: #E6F2E6; padding: 10px; border-radius: 8px; margin-top: 10px; }
.tool-container { background-color: var(--white); border-radius: 12px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 15px; margin-bottom: 20px; }
.tool-title { color: var(--secondary-color); font-size: 1.2rem; font-weight: 600; margin-bottom: 10px; }
.chart-container { height: 400px; width: 100%; border-radius: 8px; overflow: hidden; }
"""
# Function to process PDF files (unchanged)
def process_pdf(pdf_file):
if pdf_file is None:
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
try:
session_id = str(uuid.uuid4())
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_file.write(pdf_file)
pdf_path = temp_file.name
doc = fitz.open(pdf_path)
texts = [page.get_text() for page in doc]
page_images = []
for page in doc:
pix = page.get_pixmap()
img_bytes = pix.tobytes("png")
img_base64 = base64.b64encode(img_bytes).decode("utf-8")
page_images.append(img_base64)
total_pages = len(doc)
total_words = sum(len(text.split()) for text in texts)
doc.close()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.create_documents(texts)
vectorstore = FAISS.from_documents(chunks, embeddings)
index_path = os.path.join(FAISS_INDEX_DIR, session_id)
vectorstore.save_local(index_path)
user_vectorstores[session_id] = vectorstore
os.unlink(pdf_path)
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
except Exception as e:
if "pdf_path" in locals() and os.path.exists(pdf_path):
os.unlink(pdf_path)
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}
# Function to generate chatbot responses with Finance theme
def generate_response(message, session_id, model_name, history):
if not message:
return history
try:
context = ""
if session_id and session_id in user_vectorstores:
vectorstore = user_vectorstores[session_id]
docs = vectorstore.similarity_search(message, k=3)
if docs:
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
# Check if it's a stock ticker query
if message.startswith("$") and len(message) > 1 and len(message) <= 6:
ticker = message[1:].upper()
try:
stock_data = get_stock_data(ticker)
response = f"**Stock Information for {ticker}**\n\n"
response += f"Current Price: ${stock_data['current_price']}\n"
response += f"52-Week High: ${stock_data['52wk_high']}\n"
response += f"Market Cap: ${stock_data['market_cap']:,}\n"
response += f"P/E Ratio: {stock_data['pe_ratio']}\n"
response += f"More data available in the Stock Analysis tab."
history.append((message, response))
return history
except Exception as e:
history.append((message, f"Error retrieving stock data for {ticker}: {str(e)}"))
return history
system_prompt = "You are a financial assistant specializing in analyzing financial reports, statements, and market trends."
system_prompt += " You can help with stock market information, financial terminology, ratio analysis, and investment concepts."
if context:
system_prompt += " Use the following context to answer the question if relevant: " + context
completion = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
temperature=0.7,
max_tokens=1024
)
response = completion.choices[0].message.content
history.append((message, response))
return history
except Exception as e:
history.append((message, f"Error generating response: {str(e)}"))
return history
# Functions to update PDF viewer (unchanged)
def update_pdf_viewer(pdf_state):
if not pdf_state["total_pages"]:
return 0, None, "No PDF uploaded yet"
try:
img_data = base64.b64decode(pdf_state["page_images"][0])
img = Image.open(io.BytesIO(img_data))
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
except Exception as e:
print(f"Error decoding image: {e}")
return 0, None, "Error displaying PDF"
def update_image(page_num, pdf_state):
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
return None
try:
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
img = Image.open(io.BytesIO(img_data))
return img
except Exception as e:
print(f"Error decoding image: {e}")
return None
# New Finance-specific tools
def get_stock_data(ticker):
"""Tool to fetch latest stock data for a given ticker"""
try:
stock = yf.Ticker(ticker)
info = stock.info
return {
"current_price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")),
"52wk_high": info.get("fiftyTwoWeekHigh", "N/A"),
"market_cap": info.get("marketCap", "N/A"),
"pe_ratio": info.get("trailingPE", "N/A"),
"dividend_yield": info.get("dividendYield", "N/A"),
"beta": info.get("beta", "N/A"),
"average_volume": info.get("averageVolume", "N/A")
}
except Exception as e:
print(f"Error fetching stock data: {e}")
raise e
def get_stock_history(ticker, period="1y"):
"""Get historical data for charting"""
try:
stock = yf.Ticker(ticker)
hist = stock.history(period=period)
return hist
except Exception as e:
print(f"Error fetching stock history: {e}")
return pd.DataFrame()
def get_fred_data(indicator):
"""Get economic data from FRED API"""
api_key = os.getenv("FRED_API_KEY", "")
if not api_key:
return "FRED API key not configured"
base_url = "https://api.stlouisfed.org/fred/series/observations"
params = {
"series_id": indicator,
"api_key": api_key,
"file_type": "json",
"sort_order": "desc",
"limit": 100
}
try:
response = requests.get(base_url, params=params)
data = response.json()
return data.get("observations", [])
except Exception as e:
print(f"Error fetching FRED data: {e}")
return []
def create_stock_chart(ticker, period="1y"):
"""Create an interactive stock chart using Plotly"""
try:
df = get_stock_history(ticker, period)
if df.empty:
return None
fig = go.Figure()
# Add candlestick chart
fig.add_trace(
go.Candlestick(
x=df.index,
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['Close'],
name=ticker
)
)
# Add volume as bar chart on secondary y-axis
fig.add_trace(
go.Bar(
x=df.index,
y=df['Volume'],
name='Volume',
marker_color='rgba(0, 128, 0, 0.3)',
yaxis='y2'
)
)
# Update layout for dual y-axis
fig.update_layout(
title=f'{ticker} Stock Price',
yaxis_title='Price (USD)',
xaxis_title='Date',
template='plotly_white',
yaxis=dict(
domain=[0.3, 1.0]
),
yaxis2=dict(
domain=[0, 0.2],
title='Volume'
),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
height=500
)
return fig
except Exception as e:
print(f"Error creating stock chart: {e}")
return None
def analyze_ticker(ticker_input, period):
"""Process the ticker input and return analysis"""
if not ticker_input:
return None, "Please enter a valid ticker symbol", None
ticker = ticker_input.strip().upper()
if ticker.startswith("$"):
ticker = ticker[1:]
try:
stock_data = get_stock_data(ticker)
chart = create_stock_chart(ticker, period)
# Create a formatted summary
summary = f"""
### {ticker} Analysis
**Current Price:** ${stock_data['current_price']}
**52-Week High:** ${stock_data['52wk_high']}
**Market Cap:** ${stock_data['market_cap']:,}
**P/E Ratio:** {stock_data['pe_ratio']}
**Dividend Yield:** {stock_data['dividend_yield'] * 100 if stock_data['dividend_yield'] != 'N/A' else 'N/A'}%
**Beta:** {stock_data['beta']}
**Avg Volume:** {stock_data['average_volume']:,}
"""
return chart, summary, ticker
except Exception as e:
return None, f"Error analyzing ticker {ticker}: {str(e)}", None
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
current_session_id = gr.State(None)
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
current_ticker = gr.State(None)
gr.HTML("""
<div class="header">
<div class="header-title">Fin-Vision</div>
<div class="header-subtitle">Analyze financial documents with Groq's LLM API.</div>
</div>
""")
with gr.Row(elem_classes="container"):
with gr.Column(scale=1, min_width=300):
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
upload_button = gr.Button("Process PDF", variant="primary")
pdf_status = gr.Markdown("No PDF uploaded yet")
model_dropdown = gr.Dropdown(
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
value="llama3-70b-8192",
label="Select Groq Model"
)
# Finance Tools Section
gr.Markdown("### Financial Tools", elem_classes="tool-title")
with gr.Group(elem_classes="tool-container"):
with gr.Tabs():
with gr.TabItem("Stock Analysis"):
ticker_input = gr.Textbox(label="Enter Ticker Symbol (e.g., AAPL)", placeholder="AAPL")
period_dropdown = gr.Dropdown(
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
value="1y",
label="Time Period"
)
analyze_button = gr.Button("Analyze Stock")
with gr.Column(scale=2, min_width=600):
with gr.Tabs():
with gr.TabItem("PDF Viewer"):
with gr.Column(elem_classes="pdf-viewer-container"):
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
with gr.TabItem("Stock Analysis"):
with gr.Column(elem_classes="pdf-viewer-container"):
stock_chart = gr.Plot(label="Stock Price Chart", elem_classes="chart-container")
stock_summary = gr.Markdown("Enter a ticker symbol to see analysis")
with gr.Row(elem_classes="container"):
with gr.Column(scale=2, min_width=600):
chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container")
with gr.Row():
msg = gr.Textbox(show_label=False, placeholder="Ask about your financial document or type $TICKER for stock info...", scale=5)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Conversation")
# Event Handlers
upload_button.click(
process_pdf,
inputs=[pdf_file],
outputs=[current_session_id, pdf_status, pdf_state]
).then(
update_pdf_viewer,
inputs=[pdf_state],
outputs=[page_slider, pdf_image, stats_display]
)
msg.submit(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
send_btn.click(
generate_response,
inputs=[msg, current_session_id, model_dropdown, chatbot],
outputs=[chatbot]
).then(lambda: "", None, [msg])
clear_btn.click(
lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet", None),
None,
[chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display, current_ticker]
)
page_slider.change(
update_image,
inputs=[page_slider, pdf_state],
outputs=[pdf_image]
)
# Stock analysis handler
analyze_button.click(
analyze_ticker,
inputs=[ticker_input, period_dropdown],
outputs=[stock_chart, stock_summary, current_ticker]
)
# Add footer with attribution
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
Created by Calvin Allen Crawford
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch() |