File size: 18,009 Bytes
d5b9a02
 
37edaf0
 
 
d5b9a02
2d7ebae
d5b9a02
2d7ebae
6046e11
d5b9a02
 
 
 
 
 
 
 
37edaf0
875d07e
37edaf0
6046e11
d5b9a02
37edaf0
875d07e
37edaf0
 
 
 
e660b38
37edaf0
e660b38
d5b9a02
37edaf0
7c5a246
d5b9a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5a246
 
d5b9a02
774a6a3
 
e660b38
774a6a3
 
 
 
 
 
 
 
e660b38
 
 
 
 
 
774a6a3
 
 
 
6046e11
 
 
 
 
 
774a6a3
 
e660b38
6046e11
774a6a3
 
 
e660b38
774a6a3
6046e11
d5b9a02
99f3982
 
 
 
 
 
 
 
6046e11
 
 
 
 
 
 
 
 
 
 
d5b9a02
6046e11
 
 
 
 
 
 
 
 
99f3982
 
 
 
 
 
 
 
 
6046e11
99f3982
 
 
6046e11
99f3982
 
6046e11
99f3982
2d7ebae
6046e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5b9a02
6046e11
 
 
 
 
 
 
 
 
 
 
 
 
 
d5b9a02
6046e11
 
 
 
 
 
 
 
 
 
 
 
 
d5b9a02
9a94a21
 
 
d5b9a02
9a94a21
 
 
d5b9a02
 
9a94a21
 
 
d5b9a02
 
 
 
 
 
 
 
 
 
7c5a246
d5b9a02
 
 
7c5a246
d5b9a02
 
 
 
 
 
7c5a246
d5b9a02
d35bbe4
d5b9a02
 
 
 
 
 
 
2d7ebae
d5b9a02
 
 
 
 
 
 
 
 
 
 
 
7c5a246
d5b9a02
7c5a246
 
 
 
 
 
 
 
 
 
d5b9a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5a246
 
 
 
 
 
d5b9a02
 
 
7c5a246
d5b9a02
7c5a246
e660b38
d5b9a02
 
 
 
 
 
 
 
37edaf0
584d800
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import gradio as gr
import groq
import os
import tempfile
import uuid
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import fitz  # PyMuPDF
import base64
from PIL import Image
import io
import requests
import json

# Load environment variables
load_dotenv()
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY"))
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Directory to store FAISS indexes
FAISS_INDEX_DIR = "faiss_indexes_finance"
if not os.path.exists(FAISS_INDEX_DIR):
    os.makedirs(FAISS_INDEX_DIR)

# Dictionary to store user-specific vectorstores
user_vectorstores = {}

# Custom CSS for Finance theme
custom_css = """
:root {
    --primary-color: #FFD700;  /* Gold */
    --secondary-color: #008000;  /* Dark Green */
    --light-background: #F0FFF0;  /* Honeydew */
    --dark-text: #333333;
    --white: #FFFFFF;
    --border-color: #E5E7EB;
}
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; }
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; }
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; }
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; }
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; }
.message-user { background-color: var(--primary-color) !important; color: var(--dark-text) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; }
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; }
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; }
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; }
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; }
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; }
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); }
.stats-box { background-color: #E6F2E6; padding: 10px; border-radius: 8px; margin-top: 10px; }
.tool-container { background-color: var(--white); border-radius: 12px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 15px; margin-bottom: 20px; }
.tool-title { color: var(--secondary-color); font-size: 1.2rem; font-weight: 600; margin-bottom: 10px; }
.chart-container { height: 400px; width: 100%; border-radius: 8px; overflow: hidden; }
"""

# Function to process PDF files (unchanged)
def process_pdf(pdf_file):
    if pdf_file is None:
        return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0}
    try:
        session_id = str(uuid.uuid4())
        with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
            temp_file.write(pdf_file)
            pdf_path = temp_file.name
        
        doc = fitz.open(pdf_path)
        texts = [page.get_text() for page in doc]
        page_images = []
        for page in doc:
            pix = page.get_pixmap()
            img_bytes = pix.tobytes("png")
            img_base64 = base64.b64encode(img_bytes).decode("utf-8")
            page_images.append(img_base64)
        total_pages = len(doc)
        total_words = sum(len(text.split()) for text in texts)
        doc.close()

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        chunks = text_splitter.create_documents(texts)
        vectorstore = FAISS.from_documents(chunks, embeddings)
        index_path = os.path.join(FAISS_INDEX_DIR, session_id)
        vectorstore.save_local(index_path)
        user_vectorstores[session_id] = vectorstore

        os.unlink(pdf_path)
        pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words}
        return session_id, f"✅ Successfully processed {len(chunks)} text chunks from your PDF", pdf_state
    except Exception as e:
        if "pdf_path" in locals() and os.path.exists(pdf_path):
            os.unlink(pdf_path)
        return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0}

# Function to generate chatbot responses with Finance theme
def generate_response(message, session_id, model_name, history):
    if not message:
        return history
    try:
        context = ""
        if session_id and session_id in user_vectorstores:
            vectorstore = user_vectorstores[session_id]
            docs = vectorstore.similarity_search(message, k=3)
            if docs:
                context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs)
        
        # Check if it's a stock ticker query
        if message.startswith("$") and len(message) > 1 and len(message) <= 6:
            ticker = message[1:].upper()
            try:
                stock_data = get_stock_data(ticker)
                response = f"**Stock Information for {ticker}**\n\n"
                response += f"Current Price: ${stock_data['current_price']}\n"
                response += f"52-Week High: ${stock_data['52wk_high']}\n"
                response += f"Market Cap: ${stock_data['market_cap']:,}\n"
                response += f"P/E Ratio: {stock_data['pe_ratio']}\n"
                response += f"More data available in the Stock Analysis tab."
                history.append((message, response))
                return history
            except Exception as e:
                history.append((message, f"Error retrieving stock data for {ticker}: {str(e)}"))
                return history
                
        system_prompt = "You are a financial assistant specializing in analyzing financial reports, statements, and market trends."
        system_prompt += " You can help with stock market information, financial terminology, ratio analysis, and investment concepts."
        if context:
            system_prompt += " Use the following context to answer the question if relevant: " + context
        
        completion = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": message}
            ],
            temperature=0.7,
            max_tokens=1024
        )
        response = completion.choices[0].message.content
        history.append((message, response))
        return history
    except Exception as e:
        history.append((message, f"Error generating response: {str(e)}"))
        return history

# Functions to update PDF viewer (unchanged)
def update_pdf_viewer(pdf_state):
    if not pdf_state["total_pages"]:
        return 0, None, "No PDF uploaded yet"
    try:
        img_data = base64.b64decode(pdf_state["page_images"][0])
        img = Image.open(io.BytesIO(img_data))
        return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}"
    except Exception as e:
        print(f"Error decoding image: {e}")
        return 0, None, "Error displaying PDF"

def update_image(page_num, pdf_state):
    if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]:
        return None
    try:
        img_data = base64.b64decode(pdf_state["page_images"][page_num - 1])
        img = Image.open(io.BytesIO(img_data))
        return img
    except Exception as e:
        print(f"Error decoding image: {e}")
        return None

# New Finance-specific tools
def get_stock_data(ticker):
    """Tool to fetch latest stock data for a given ticker"""
    try:
        stock = yf.Ticker(ticker)
        info = stock.info
        return {
            "current_price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")),
            "52wk_high": info.get("fiftyTwoWeekHigh", "N/A"),
            "market_cap": info.get("marketCap", "N/A"),
            "pe_ratio": info.get("trailingPE", "N/A"),
            "dividend_yield": info.get("dividendYield", "N/A"),
            "beta": info.get("beta", "N/A"),
            "average_volume": info.get("averageVolume", "N/A")
        }
    except Exception as e:
        print(f"Error fetching stock data: {e}")
        raise e

def get_stock_history(ticker, period="1y"):
    """Get historical data for charting"""
    try:
        stock = yf.Ticker(ticker)
        hist = stock.history(period=period)
        return hist
    except Exception as e:
        print(f"Error fetching stock history: {e}")
        return pd.DataFrame()

def get_fred_data(indicator):
    """Get economic data from FRED API"""
    api_key = os.getenv("FRED_API_KEY", "")
    if not api_key:
        return "FRED API key not configured"
    
    base_url = "https://api.stlouisfed.org/fred/series/observations"
    params = {
        "series_id": indicator,
        "api_key": api_key,
        "file_type": "json",
        "sort_order": "desc",
        "limit": 100
    }
    
    try:
        response = requests.get(base_url, params=params)
        data = response.json()
        return data.get("observations", [])
    except Exception as e:
        print(f"Error fetching FRED data: {e}")
        return []

def create_stock_chart(ticker, period="1y"):
    """Create an interactive stock chart using Plotly"""
    try:
        df = get_stock_history(ticker, period)
        if df.empty:
            return None
            
        fig = go.Figure()
        
        # Add candlestick chart
        fig.add_trace(
            go.Candlestick(
                x=df.index,
                open=df['Open'],
                high=df['High'],
                low=df['Low'],
                close=df['Close'],
                name=ticker
            )
        )
        
        # Add volume as bar chart on secondary y-axis
        fig.add_trace(
            go.Bar(
                x=df.index,
                y=df['Volume'],
                name='Volume',
                marker_color='rgba(0, 128, 0, 0.3)',
                yaxis='y2'
            )
        )
        
        # Update layout for dual y-axis
        fig.update_layout(
            title=f'{ticker} Stock Price',
            yaxis_title='Price (USD)',
            xaxis_title='Date',
            template='plotly_white',
            yaxis=dict(
                domain=[0.3, 1.0]
            ),
            yaxis2=dict(
                domain=[0, 0.2],
                title='Volume'
            ),
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            height=500
        )
        
        return fig
    except Exception as e:
        print(f"Error creating stock chart: {e}")
        return None

def analyze_ticker(ticker_input, period):
    """Process the ticker input and return analysis"""
    if not ticker_input:
        return None, "Please enter a valid ticker symbol", None
    
    ticker = ticker_input.strip().upper()
    if ticker.startswith("$"):
        ticker = ticker[1:]
    
    try:
        stock_data = get_stock_data(ticker)
        chart = create_stock_chart(ticker, period)
        
        # Create a formatted summary
        summary = f"""
### {ticker} Analysis
**Current Price:** ${stock_data['current_price']}  
**52-Week High:** ${stock_data['52wk_high']}  
**Market Cap:** ${stock_data['market_cap']:,}  
**P/E Ratio:** {stock_data['pe_ratio']}  
**Dividend Yield:** {stock_data['dividend_yield'] * 100 if stock_data['dividend_yield'] != 'N/A' else 'N/A'}%  
**Beta:** {stock_data['beta']}  
**Avg Volume:** {stock_data['average_volume']:,}  
        """
        
        return chart, summary, ticker
    except Exception as e:
        return None, f"Error analyzing ticker {ticker}: {str(e)}", None

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    current_session_id = gr.State(None)
    pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0})
    current_ticker = gr.State(None)
    
    gr.HTML("""
    <div class="header">
        <div class="header-title">Fin-Vision</div>
        <div class="header-subtitle">Analyze financial documents with Groq's LLM API.</div>
    </div>
    """)
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1, min_width=300):
            pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary")
            upload_button = gr.Button("Process PDF", variant="primary")
            pdf_status = gr.Markdown("No PDF uploaded yet")
            model_dropdown = gr.Dropdown(
                choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"],
                value="llama3-70b-8192",
                label="Select Groq Model"
            )
            
            # Finance Tools Section
            gr.Markdown("### Financial Tools", elem_classes="tool-title")
            with gr.Group(elem_classes="tool-container"):
                with gr.Tabs():
                    with gr.TabItem("Stock Analysis"):
                        ticker_input = gr.Textbox(label="Enter Ticker Symbol (e.g., AAPL)", placeholder="AAPL")
                        period_dropdown = gr.Dropdown(
                            choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
                            value="1y",
                            label="Time Period"
                        )
                        analyze_button = gr.Button("Analyze Stock")
            
        with gr.Column(scale=2, min_width=600):
            with gr.Tabs():
                with gr.TabItem("PDF Viewer"):
                    with gr.Column(elem_classes="pdf-viewer-container"):
                        page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1)
                        pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image")
                        stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box")
                
                with gr.TabItem("Stock Analysis"):
                    with gr.Column(elem_classes="pdf-viewer-container"):
                        stock_chart = gr.Plot(label="Stock Price Chart", elem_classes="chart-container")
                        stock_summary = gr.Markdown("Enter a ticker symbol to see analysis")
    
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=2, min_width=600):
            chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container")
            with gr.Row():
                msg = gr.Textbox(show_label=False, placeholder="Ask about your financial document or type $TICKER for stock info...", scale=5)
                send_btn = gr.Button("Send", scale=1)
            clear_btn = gr.Button("Clear Conversation")
    
    # Event Handlers
    upload_button.click(
        process_pdf,
        inputs=[pdf_file],
        outputs=[current_session_id, pdf_status, pdf_state]
    ).then(
        update_pdf_viewer,
        inputs=[pdf_state],
        outputs=[page_slider, pdf_image, stats_display]
    )
    
    msg.submit(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    send_btn.click(
        generate_response,
        inputs=[msg, current_session_id, model_dropdown, chatbot],
        outputs=[chatbot]
    ).then(lambda: "", None, [msg])
    
    clear_btn.click(
        lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet", None),
        None,
        [chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display, current_ticker]
    )
    
    page_slider.change(
        update_image,
        inputs=[page_slider, pdf_state],
        outputs=[pdf_image]
    )
    
    # Stock analysis handler
    analyze_button.click(
        analyze_ticker,
        inputs=[ticker_input, period_dropdown],
        outputs=[stock_chart, stock_summary, current_ticker]
    )

# Add footer with attribution
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; color: #666; font-size: 0.8rem; border-top: 1px solid #eee;">
    Created by Calvin Allen Crawford
</div>
""")

# Launch the app
if __name__ == "__main__":
    demo.launch()