Spaces:
Sleeping
Sleeping
File size: 52,035 Bytes
01be763 35d44ea 01be763 7ec0dc1 68a3b7e 7ec0dc1 0d26638 7ec0dc1 f068f81 bc73880 2e68124 0d26638 336fd65 b9b6eda 108be32 68a3b7e 35d44ea 3d95f70 e7d8301 7b81004 2e68124 0d26638 a1fb28c 0d26638 a1fb28c 0d26638 d880fa5 0d26638 2e68124 a1fb28c e7d8301 a1fb28c 0d26638 a1fb28c 0d26638 a1fb28c 0d26638 3d95f70 2e68124 0d26638 e7d8301 0d26638 e7d8301 a1fb28c 3d95f70 e7d8301 3d95f70 2e68124 029abf3 e7d8301 3d95f70 e7d8301 0d26638 68a3b7e bc73880 7ec0dc1 68a3b7e 7ec0dc1 68a3b7e 7ec0dc1 68a3b7e 7ec0dc1 35d44ea bc73880 35d44ea bc73880 35d44ea 7ec0dc1 35d44ea a828de5 173e242 a828de5 173e242 a828de5 0d26638 d880fa5 e2b2636 68a3b7e bc73880 68a3b7e 7ec0dc1 68a3b7e e2b2636 7ec0dc1 e2b2636 7ec0dc1 e2b2636 7ec0dc1 e2b2636 68a3b7e e2b2636 68a3b7e e2b2636 68a3b7e e2b2636 68a3b7e 7ec0dc1 0d26638 7ec0dc1 68a3b7e d880fa5 c40b292 bde5851 35d44ea bde5851 d880fa5 bc73880 7ec0dc1 bc73880 ddcebbb 7ec0dc1 b9b6eda ddcebbb b9b6eda ddcebbb b9b6eda e2b2636 ddcebbb 42a818a ddcebbb b9b6eda 42a818a b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb e2b2636 ddcebbb b9b6eda 42a818a ddcebbb 42a818a b9b6eda 42a818a ddcebbb b9b6eda e2b2636 ddcebbb b9b6eda ddcebbb 42a818a ddcebbb 42a818a ddcebbb b9b6eda 42a818a ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda 42a818a ddcebbb b9b6eda 42a818a ddcebbb b9b6eda ddcebbb 42a818a ddcebbb b9b6eda 42a818a ddcebbb b9b6eda ddcebbb b9b6eda 42a818a ddcebbb e2b2636 2e68124 42a818a 2e68124 42a818a 2e68124 42a818a 2e68124 42a818a 2e68124 b9b6eda 2e68124 42a818a 68a3b7e 42a818a 2e68124 d880fa5 c72ced1 7ec0dc1 68a3b7e 2e68124 68a3b7e c72ced1 68a3b7e 7ec0dc1 68a3b7e c72ced1 68a3b7e c72ced1 d880fa5 bc73880 7ec0dc1 2e68124 7ec0dc1 2e68124 7ec0dc1 a36e47b 2e68124 a36e47b c72ced1 a36e47b 7ec0dc1 2e68124 d880fa5 68a3b7e d2a3181 407438c 7ec0dc1 961a3b2 7ec0dc1 961a3b2 7ec0dc1 961a3b2 dd7b391 961a3b2 2e68124 dd7b391 961a3b2 2e68124 5ea8201 961a3b2 2e68124 961a3b2 2e68124 a36e47b 961a3b2 a36e47b 961a3b2 a36e47b 961a3b2 a36e47b 961a3b2 a36e47b 961a3b2 68a3b7e a36e47b 2e68124 68a3b7e 2e68124 a36e47b 2e68124 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b 68a3b7e a36e47b c72ced1 a36e47b c72ced1 a36e47b 68a3b7e a36e47b 68a3b7e a36e47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, RandomForestClassifier
from sklearn.svm import SVR, SVC
from sklearn.decomposition import PCA #Import at top
from sklearn.metrics import silhouette_score #Import at top
from sklearn.cluster import DBSCAN #Import at top
from sklearn.feature_selection import SelectKBest #Import at top
import joblib #Import at top
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.impute import KNNImputer, SimpleImputer
from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
from io import StringIO
import joblib
import requests
import asyncio
from io import BytesIO
import base64
import time
from sklearn.cluster import KMeans
import scipy.stats as stats
# Configurations
st.set_page_config(page_title="Executive Insights Pro", layout="wide", page_icon="📈")
# ----Load Image----
@st.cache_data(ttl=3600)
def load_image(image_url):
"""Loads an image from a URL and returns bytes."""
try:
response = requests.get(image_url, stream=True)
response.raise_for_status()
return response.content
except requests.exceptions.RequestException as e:
st.error(f"Error loading image: {e}")
return None
# ----Function to make and convert background to base 64 code-----
def set_background():
"""Sets the background image using base64 encoding."""
image_url = "https://wallpapers.com/images/featured/skrwoybjif4j8l2j.jpg" # Corporate Image
image_data = load_image(image_url)
if image_data:
# Convert bytes to base64
image_base64 = base64.b64encode(image_data).decode()
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/jpeg;base64,{image_base64});
background-size: cover;
background-position: center center;
background-attachment: fixed;
}}
</style>
""",
unsafe_allow_html=True,
)
return
# Simplified CSS
def apply_simplified_theme():
"""Injects simplified CSS to enhance Streamlit's default style."""
st.markdown(
"""
<style>
[data-testid="stSidebar"] {
background-color: rgba(52, 73, 94, 0.9);
color: white;
}
.main h1, .main h2, .main h3, .main h4, .main h5, .main h6 {
color: #5396C6;
}
.st-bb, .st-ae, .st-bv {
background-color: rgba(20, 20, 30, 0.3);
box-shadow: 1px 1px 5px #4e4e4e;
}
</style>
""",
unsafe_allow_html=True,
)
return
# Apply background and simplified theme
set_background()
apply_simplified_theme()
def show_loader(message="Loading..."):
"""Displays an animated loader."""
st.markdown(
f"""
<div style="display: flex; align-items: center; justify-content: center; margin-top: 20px;">
<div class="loader"></div>
<span style="margin-left: 10px; color: #00f7ff;">{message}</span>
</div>
""",
unsafe_allow_html=True
)
@st.cache_data(ttl=3600, allow_output_mutation=True) #Added allow_output_mutation
def load_data(uploaded_file):
"""Load and cache dataset, with file type validation."""
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1].lower()
mime_type = mimetypes.guess_type(uploaded_file.name)[0]
max_file_size_mb = 50 # Set a maximum file size (adjust as needed)
file_size_mb = uploaded_file.size / (1024 * 1024)
if file_size_mb > max_file_size_mb:
st.error(f"File size exceeds the limit of {max_file_size_mb} MB.")
return None
try: # Wrap file reading in a try...except
if file_extension == "csv" or mime_type == 'text/csv':
df = pd.read_csv(uploaded_file)
return df
elif file_extension in ["xlsx", "xls"] or mime_type in ['application/vnd.ms-excel', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet']:
df = pd.read_excel(uploaded_file)
return df
else:
st.error("Unsupported file type. Please upload a CSV or Excel file.")
return None
except FileNotFoundError:
st.error("File not found. Please check the file path.")
except pd.errors.ParserError: # Catch pandas-specific parsing errors
st.error("Error parsing the file. Make sure it's a valid CSV or Excel file.")
except Exception as e:
st.error(f"An unexpected error occurred: {type(e).__name__} - {str(e)}")
return None # Handle other potential exceptions
else:
return None
@st.cache_data(ttl=3600)
def generate_profile(df):
"""Generate automated EDA report"""
return ProfileReport(df, minimal=True)
# Session State Management
if 'raw_data' not in st.session_state:
st.session_state.raw_data = None
if 'cleaned_data' not in st.session_state:
st.session_state.cleaned_data = None
if 'train_test' not in st.session_state:
st.session_state.train_test = {}
if 'model' not in st.session_state:
st.session_state.model = None
if 'preprocessor' not in st.session_state:
st.session_state.preprocessor = None # to store the column transformer
# Sidebar Navigation
st.sidebar.title("🔮 Data Wizard Pro")
# Apply custom CSS to change text color in the sidebar
st.markdown(
"""
<style>
[data-testid="stSidebar"] {
color: #00f7ff; /* Cyan color for sidebar text */
}
</style>
""",
unsafe_allow_html=True,
)
# Replace the existing app_mode section with this:
app_mode = st.sidebar.radio("Navigate", [
"Data Upload",
"Smart Cleaning",
"Advanced EDA",
"Model Training",
"Predictions",
"Visualization Lab",
"Neural Network Studio" # New option
])
# --- Main App Logic ---
if app_mode == "Data Upload":
st.title("📤 Data Upload & Initial Analysis")
# File Upload Section with improved styling
st.markdown(
"""
<style>
.stFileUploader label {
color: #00f7ff !important; /* Cyan color for the label */
}
.stFileUploader div div div {
background-color: #141422 !important; /* Dark background */
color: #e0e0ff !important; /* Light text */
border: 1px solid #00f7ff !important; /* Cyan border */
border-radius: 10px;
}
</style>
""",
unsafe_allow_html=True,
)
uploaded_file = st.file_uploader(
"Choose a CSV or Excel file", type=["csv", "xlsx"],
help="Upload your dataset here. Supported formats: CSV, XLSX"
)
if uploaded_file:
df = load_data(uploaded_file)
if df is not None:
# only proceed if load_data returned a valid dataframe
st.session_state.raw_data = df
st.session_state.cleaned_data = df.copy()
st.subheader("Data Overview")
# Data Overview Cards with more context
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Number of Rows", df.shape[0], help="Total number of entries in the dataset.")
with col2:
st.metric("Number of Columns", df.shape[1], help="Total number of features in the dataset.")
with col3:
num_missing = df.isna().sum().sum()
st.metric("Total Missing Values", num_missing, help="Total number of missing entries across the entire dataset.")
# Display Data Types
st.write("Column Data Types:")
dtype_counts = df.dtypes.value_counts().to_dict()
for dtype, count in dtype_counts.items():
st.write(f"- {dtype}: {count} column(s)")
# Sample Data Table with improved display
st.subheader("Sample Data")
num_rows_preview = st.slider("Number of Rows to Preview", 5, 20, 10, help="Adjust the number of rows displayed in the sample data.")
st.dataframe(df.head(num_rows_preview), use_container_width=True)
# Column Statistics
with st.expander("📊 Column Statistics"):
for col in df.columns:
st.subheader(f"Column: {col}")
st.write(f"Data type: {df[col].dtype}")
if pd.api.types.is_numeric_dtype(df[col]):
st.write("Summary Statistics:")
st.write(df[col].describe())
else:
st.write("Value Counts:")
st.write(df[col].value_counts())
# Automated EDA Report
with st.expander("🚀 Automated Data Report"):
if st.button("Generate Smart Report"):
show_loader("Generating EDA Report")
pr = generate_profile(df)
st_profile_report(pr)
elif app_mode == "Smart Cleaning":
st.title("🧼 Intelligent Data Cleaning")
if st.session_state.raw_data is not None:
df = st.session_state.cleaned_data
# Cleaning Toolkit
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Cleaning Actions")
clean_action = st.selectbox("Choose Operation", [
"Handle Missing Values",
"Clean Text",
# ... other cleaning operations ...
])
if clean_action == "Handle Missing Values":
columns_with_missing = df.columns[df.isnull().any()].tolist()
column_to_impute = st.selectbox("Column to Impute", ["All Columns"] + columns_with_missing)
method = st.selectbox("Imputation Method", [
"KNN Imputation",
"Median Fill",
"Mean Fill",
"Drop Missing",
"Constant Value Fill"
])
if method == "KNN Imputation":
knn_neighbors = st.slider("KNN Neighbors", 2, 10, 5)
elif method == "Constant Value Fill":
constant_value = st.text_input("Constant Value")
elif clean_action == "Clean Text":
text_column = st.selectbox("Text Column", df.select_dtypes(include='object').columns)
cleaning_operation = st.selectbox("Cleaning Operation", ["Remove Special Characters", "Lowercase", "Uppercase", "Remove Extra Spaces"])
if cleaning_operation == "Remove Special Characters":
chars_to_remove = st.text_input("Characters to Remove", r'[^a-zA-Z0-9\s]')
with col2:
if st.button("Apply Transformation"):
with st.spinner("Applying changes..."):
current_df = df.copy()
# ... (your data history logic) ...
if clean_action == "Handle Missing Values":
if method == "KNN Imputation":
imputer = KNNImputer(n_neighbors=knn_neighbors)
if column_to_impute == "All Columns":
current_df = pd.DataFrame(imputer.fit_transform(current_df), columns=current_df.columns)
else:
current_df[[column_to_impute]] = pd.DataFrame(imputer.fit_transform(current_df[[column_to_impute]]), columns=[column_to_impute])
elif method == "Median Fill":
if column_to_impute == "All Columns":
current_df = current_df.fillna(current_df.median())
else:
current_df[column_to_impute] = current_df[column_to_impute].fillna(current_df[column_to_impute].median())
elif method == "Mean Fill":
if column_to_impute == "All Columns":
current_df = current_df.fillna(current_df.mean())
else:
current_df[column_to_impute] = current_df[column_to_impute].fillna(current_df[column_to_impute].mean())
elif method == "Constant Value Fill":
if column_to_impute == "All Columns":
current_df = current_df.fillna(constant_value)
else:
current_df[column_to_impute] = current_df[column_to_impute].fillna(constant_value)
else:
current_df = current_df.dropna()
elif clean_action == "Clean Text":
import re #moved here since its only used here to avoid library bloat
def clean_text(text, operation, chars_to_remove=r'[^a-zA-Z0-9\s]'):
if operation == "Remove Special Characters":
text = re.sub(chars_to_remove, '', str(text))
elif operation == "Lowercase":
text = str(text).lower()
elif operation == "Uppercase":
text = str(text).upper()
elif operation == "Remove Extra Spaces":
text = " ".join(str(text).split())
return text
current_df[text_column] = current_df[text_column].astype(str).apply(lambda x: clean_text(x, cleaning_operation, chars_to_remove))
st.session_state.cleaned_data = current_df
st.success("Transformation applied!")
elif app_mode == "Advanced EDA":
st.title("🔍 Advanced Exploratory Analysis")
if st.session_state.cleaned_data is not None:
df = st.session_state.cleaned_data.copy()
# Initialize session state for plot configuration
if 'plot_config' not in st.session_state:
st.session_state.plot_config = {
'plot_type': "Histogram",
'x_col': df.columns[0] if len(df.columns) > 0 else None,
'y_col': df.columns[1] if len(df.columns) > 1 else None,
'z_col': df.columns[2] if len(df.columns) > 2 else None,
'color_col': None,
'size_col': None,
'time_col': None,
'value_col': None,
'scatter_matrix_cols': df.select_dtypes(include=np.number).columns.tolist()[:5],
'color_palette': "#00f7ff",
'color_continuous_scale': "Viridis",
'hover_data_cols': [],
'filter_col': None,
'filter_options': []
}
# Data Filtering Section
with st.expander("🔎 Data Filtering", expanded=False):
# Use direct session state assignment for reactivity
st.session_state.plot_config['filter_col'] = st.selectbox(
"Filter Column",
[None] + list(df.columns),
help="Choose a column to filter the data."
)
if st.session_state.plot_config['filter_col']:
unique_values = df[st.session_state.plot_config['filter_col']].unique()
st.session_state.plot_config['filter_options'] = st.multiselect(
"Filter Values",
unique_values,
default=unique_values,
help=f"Select values from '{st.session_state.plot_config['filter_col']}'"
)
df = df[df[st.session_state.plot_config['filter_col']].isin(
st.session_state.plot_config['filter_options']
)]
# Visualization Configuration
st.sidebar.header("📊 Plot Configuration")
# Plot type selector
st.session_state.plot_config['plot_type'] = st.sidebar.selectbox(
"Choose Visualization",
[
"Histogram", "Scatter Plot", "Box Plot",
"Correlation Heatmap", "3D Scatter",
"Violin Plot", "Time Series", "Scatter Matrix"
],
index=0 # Reset to first option when plot type changes
)
# Dynamic controls based on plot type
if st.session_state.plot_config['plot_type'] != "Correlation Heatmap":
st.session_state.plot_config['x_col'] = st.sidebar.selectbox(
"X Axis",
df.columns,
index=df.columns.get_loc(st.session_state.plot_config['x_col'])
if st.session_state.plot_config['x_col'] in df.columns else 0
)
if st.session_state.plot_config['plot_type'] in ["Scatter Plot", "Box Plot",
"Violin Plot", "Time Series",
"3D Scatter", "Histogram"]:
st.session_state.plot_config['y_col'] = st.sidebar.selectbox(
"Y Axis",
df.columns,
index=df.columns.get_loc(st.session_state.plot_config['y_col'])
if st.session_state.plot_config['y_col'] in df.columns else 0
)
if st.session_state.plot_config['plot_type'] == "3D Scatter":
st.session_state.plot_config['z_col'] = st.sidebar.selectbox(
"Z Axis",
df.columns,
index=df.columns.get_loc(st.session_state.plot_config['z_col'])
if st.session_state.plot_config['z_col'] in df.columns else 0
)
st.session_state.plot_config['color_col'] = st.sidebar.selectbox(
"Color by",
[None] + list(df.columns)
)
# Color configuration
if st.session_state.plot_config['plot_type'] == "Correlation Heatmap":
st.session_state.plot_config['color_continuous_scale'] = st.sidebar.selectbox(
"Color Scale",
['Viridis', 'Plasma', 'Magma', 'Cividis', 'RdBu']
)
else:
st.session_state.plot_config['color_palette'] = st.sidebar.selectbox(
"Color Palette",
['#00f7ff', '#ff00ff', '#f70000', '#0000f7']
)
# Additional configurations
if st.session_state.plot_config['plot_type'] == "Scatter Plot":
st.session_state.plot_config['size_col'] = st.sidebar.selectbox(
"Size by",
[None] + list(df.columns)
)
st.session_state.plot_config['hover_data_cols'] = st.sidebar.multiselect(
"Hover Data",
df.columns
)
if st.session_state.plot_config['plot_type'] == "Time Series":
st.session_state.plot_config['time_col'] = st.sidebar.selectbox(
"Time Column",
df.columns
)
st.session_state.plot_config['value_col'] = st.sidebar.selectbox(
"Value Column",
df.columns
)
if st.session_state.plot_config['plot_type'] == "Scatter Matrix":
st.session_state.plot_config['scatter_matrix_cols'] = st.multiselect(
"Columns for Scatter Matrix",
df.select_dtypes(include=np.number).columns,
default=st.session_state.plot_config['scatter_matrix_cols']
)
# Plot generation
try:
fig = None
config = st.session_state.plot_config
if config['plot_type'] == "Histogram":
fig = px.histogram(
df, x=config['x_col'], y=config['y_col'],
nbins=30, template="plotly_dark",
color_discrete_sequence=[config['color_palette']]
)
elif config['plot_type'] == "Scatter Plot":
fig = px.scatter(
df, x=config['x_col'], y=config['y_col'],
color_discrete_sequence=[config['color_palette']],
size=config['size_col'],
hover_data=config['hover_data_cols']
)
elif config['plot_type'] == "3D Scatter":
fig = px.scatter_3d(
df, x=config['x_col'], y=config['y_col'], z=config['z_col'],
color=config['color_col'],
color_discrete_sequence=[config['color_palette']]
)
elif config['plot_type'] == "Correlation Heatmap":
numeric_df = df.select_dtypes(include=np.number)
if not numeric_df.empty:
corr = numeric_df.corr()
fig = px.imshow(
corr, text_auto=True,
color_continuous_scale=config['color_continuous_scale']
)
else:
st.warning("No numerical columns found for correlation heatmap.")
elif config['plot_type'] == "Box Plot":
fig = px.box(
df, x=config['x_col'], y=config['y_col'],
color_discrete_sequence=[config['color_palette']]
)
elif config['plot_type'] == "Violin Plot":
fig = px.violin(
df, x=config['x_col'], y=config['y_col'],
box=True, points="all",
color_discrete_sequence=[config['color_palette']]
)
elif config['plot_type'] == "Time Series":
df = df.sort_values(by=config['time_col'])
fig = px.line(
df, x=config['time_col'], y=config['value_col'],
color_discrete_sequence=[config['color_palette']]
)
elif config['plot_type'] == "Scatter Matrix":
fig = px.scatter_matrix(
df, dimensions=config['scatter_matrix_cols'],
color_discrete_sequence=[config['color_palette']]
)
if fig:
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"An error occurred while generating the plot: {e}")
with st.expander("🧪 Hypothesis Testing"):
test_type = st.selectbox("Select Test Type", ["T-test", "Chi-Squared Test"])
if test_type == "T-test":
col1 = st.selectbox("Column 1 (Numeric)", df.select_dtypes(include=np.number).columns)
col2 = st.selectbox("Column 2 (Categorical)", df.select_dtypes(include='object').columns)
if st.button("Run T-test"):
# Example: Split data by category and perform t-test
try:
groups = df.groupby(col2)[col1].apply(list)
if len(groups) == 2:
t_stat, p_value = stats.ttest_ind(groups.iloc[0], groups.iloc[1])
st.write(f"T-statistic: {t_stat:.4f}")
st.write(f"P-value: {p_value:.4f}")
if p_value < 0.05:
st.write("Reject the null hypothesis.")
else:
st.write("Fail to reject the null hypothesis.")
else:
st.write("Select a categorical column with exactly two categories.")
except Exception as e:
st.error(f"An error occurred during the T-test: {e}")
elif app_mode == "Model Training":
st.title("🚂 Model Training")
feature_selection_method = st.selectbox("Feature Selection Method", ["None", "SelectKBest"])
if model_name == "Random Forest":
param_grid = {
'n_estimators': st.slider("Number of Estimators", 10, 200, 100, help="Number of trees in the forest."),
'max_depth': st.slider("Max Depth", 3, 20, 10, help="Maximum depth of the tree."),
'min_samples_split': st.slider("Minimum Samples Split", 2, 10, 2, help="Minimum samples required to split an internal node"), #New hyperparameter
'min_samples_leaf': st.slider("Minimum Samples Leaf", 1, 10, 1, help="Minimum samples required to be at a leaf node"), #New hyperparameter
}
#Inside the train model button
if st.button("Train Model"):
#Feature Selection
if feature_selection_method == "SelectKBest":
k = st.slider("Number of Features to Select", 1, len(feature_columns), len(feature_columns))
selector = SelectKBest(k=k)
X_train_selected = selector.fit_transform(X_train_processed, y_train)
X_test_selected = selector.transform(X_test_processed)
else:
X_train_selected = X_train_processed
X_test_selected = X_test_processed
# Model Training and Hyperparameter Tuning
if model_name == "Linear Regression":
model = LinearRegression()
elif model_name == "Logistic Regression":
model = LogisticRegression(max_iter=1000)
elif model_name == "Decision Tree":
if problem_type == "Regression":
model = DecisionTreeRegressor()
else:
model = DecisionTreeClassifier()
elif model_name == "Random Forest":
if problem_type == "Regression":
model = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='neg_mean_squared_error') # Example scoring
grid_search.fit(X_train_selected, y_train)
model = grid_search.best_estimator_
st.write("Best Parameters:", grid_search.best_params_)
else:
model = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=3, scoring='accuracy')
grid_search.fit(X_train_selected, y_train)
model = grid_search.best_estimator_
st.write("Best Parameters:", grid_search.best_params_)
elif model_name == "Gradient Boosting":
model = GradientBoostingRegressor() if problem_type == "Regression" else GradientBoostingClassifier()
elif model_name == "SVM":
model = SVR() if problem_type == "Regression" else SVC()
# Cross-validation
cv_scores = cross_val_score(model, X_train_selected, y_train, cv=5) #example, adjust cv
st.write(f"Cross-validation scores: {cv_scores}")
st.write(f"Mean cross-validation score: {cv_scores.mean():.4f}")
model.fit(X_train_selected, y_train)
# Model Saving
model_filename = st.text_input("Enter Model Filename (without extension)", "trained_model")
if st.button("Save Model"):
try:
joblib.dump(st.session_state.model, f"{model_filename}.joblib")
st.success(f"Model saved as {model_filename}.joblib")
except Exception as e:
st.error(f"Error saving model: {e}")
# Model loading in a different section
model_file = st.file_uploader("Upload Trained Model", type=["joblib"])
if model_file is not None:
try:
st.session_state.model = joblib.load(model_file)
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {e}")
#Model Evaluation Section
y_pred = model.predict(X_test_selected)
if problem_type == "Regression":
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.write(f"Mean Squared Error: {mse:.4f}")
st.write(f"R-squared: {r2:.4f}")
else:
accuracy = accuracy_score(y_test, y_pred)
st.write(f"Accuracy: {accuracy:.4f}")
elif app_mode == "Predictions":
st.title("🔮 Make Predictions")
if st.session_state.model is not None and st.session_state.cleaned_data is not None:
df = st.session_state.cleaned_data.copy()
# Input data for prediction
st.subheader("Enter Data for Prediction")
input_data = {}
model_columns = st.session_state.model.steps[0][1].transformers_[0][2] + st.session_state.model.steps[0][1].transformers_[1][2]
if not set(model_columns).issubset(set(df.drop(columns=[st.session_state.model.steps[-1][0]]).columns)):
st.error("The model was trained on a dataframe that contains different columns than the currently uploaded dataframe. Please upload the correct dataframe.")
st.stop()
for col in model_columns:
if pd.api.types.is_numeric_dtype(df[col]):
input_data[col] = st.number_input(f"Enter {col}", value=df[col].mean())
else:
input_data[col] = st.selectbox(f"Select {col}", df[col].unique())
# Prediction Button
if st.button("Make Prediction"):
try:
input_df = pd.DataFrame([input_data])
prediction = st.session_state.model.predict(input_df)[0]
st.subheader("Prediction Result")
st.write(f"The predicted value is: {prediction}")
# Additional Feedback (Example for Classification)
if isinstance(st.session_state.model.steps[-1][1], LogisticRegression):
probabilities = st.session_state.model.predict_proba(input_df)[0]
st.write("Predicted Probabilities:")
st.write(probabilities)
except Exception as e:
st.error(f"An error occurred during prediction: {e}")
else:
st.write("Please train a model first in the 'Model Training' section.")
#Add batch prediction section in prediction tab
st.subheader("Batch Predictions")
batch_file = st.file_uploader("Upload CSV for Batch Predictions", type=["csv"])
if batch_file is not None:
try:
batch_df = pd.read_csv(batch_file)
# Preprocess the batch data
batch_processed = st.session_state.preprocessor.transform(batch_df)
# Make predictions
batch_predictions = st.session_state.model.predict(batch_processed)
batch_df['Prediction'] = batch_predictions
st.dataframe(batch_df)
# Download predictions
csv = batch_df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # some strings
href = f'<a href="data:file/csv;base64,{b64}" download="predictions.csv">Download Predictions CSV</a>'
st.markdown(href, unsafe_allow_html=True)
except Exception as e:
st.error(f"Error processing batch file: {e}")
elif app_mode == "Visualization Lab":
st.title("🔬 Advanced Data Visualization and Clustering Lab")
# Initialize session state for cleaned data
if 'cleaned_data' not in st.session_state:
st.session_state.cleaned_data = None
# Sample data upload (replace with your data loading logic)
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
st.session_state.cleaned_data = df
st.success("Data loaded successfully!")
except Exception as e:
st.error(f"Error loading data: {e}")
if st.session_state.cleaned_data is not None:
df = st.session_state.cleaned_data.copy()
# Visualization Type Selection
visualization_type = st.selectbox("Select Visualization Type", [
"Pair Plot", "Parallel Coordinates Plot", "Andrews Curves", "Pie Chart",
"Area Chart", "Density Contour", "Sunburst Chart", "Funnel Chart", "Clustering Analysis"
])
if visualization_type == "Pair Plot":
st.subheader("Pair Plot")
cols_for_pairplot = st.multiselect("Select Columns for Pair Plot", df.select_dtypes(include=np.number).columns.tolist(), default=df.select_dtypes(include=np.number).columns.tolist()[:3])
if cols_for_pairplot:
fig = px.scatter_matrix(df, dimensions=cols_for_pairplot)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Parallel Coordinates Plot":
st.subheader("Parallel Coordinates Plot")
cols_for_parallel = st.multiselect("Select Columns for Parallel Coordinates", df.select_dtypes(include=np.number).columns.tolist(), default=df.select_dtypes(include=np.number).columns.tolist()[:5])
if cols_for_parallel:
fig = px.parallel_coordinates(df[cols_for_parallel], color=df[cols_for_parallel[0]] if cols_for_parallel else None)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Andrews Curves":
st.subheader("Andrews Curves")
cols_for_andrews = st.multiselect("Select Columns for Andrews Curves", df.select_dtypes(include=np.number).columns.tolist(), default=df.select_dtypes(include=np.number).columns.tolist()[:5])
if cols_for_andrews:
fig = px.andrews_curves(df[cols_for_andrews + [df.columns[0]]], class_column=df.columns[0])
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Pie Chart":
st.subheader("Pie Chart")
col_for_pie = st.selectbox("Select Column for Pie Chart", df.columns)
fig = px.pie(df, names=col_for_pie)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Area Chart":
st.subheader("Area Chart")
cols_for_area = st.multiselect("Select Columns for Area Chart", df.select_dtypes(include=np.number).columns.tolist(), default=df.select_dtypes(include=np.number).columns.tolist()[:3])
if cols_for_area:
fig = px.area(df[cols_for_area])
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Density Contour":
st.subheader("Density Contour")
x_col = st.selectbox("Select X Column for Density Contour", df.select_dtypes(include=np.number).columns.tolist())
y_col = st.selectbox("Select Y Column for Density Contour", df.select_dtypes(include=np.number).columns.tolist())
fig = px.density_contour(df, x=x_col, y=y_col)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Sunburst Chart":
st.subheader("Sunburst Chart")
path_cols = st.multiselect("Select Path Columns for Sunburst Chart", df.columns)
if path_cols:
fig = px.sunburst(df, path=path_cols)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Funnel Chart":
st.subheader("Funnel Chart")
x_col = st.selectbox("Select X Column for Funnel Chart (Values)", df.select_dtypes(include=np.number).columns.tolist())
y_col = st.selectbox("Select Y Column for Funnel Chart (Categories)", df.columns)
fig = px.funnel(df, x=x_col, y=y_col)
st.plotly_chart(fig, use_container_width=True)
elif visualization_type == "Clustering Analysis":
st.subheader("Clustering Analysis")
numerical_cols = df.select_dtypes(include=np.number).columns.tolist()
if not numerical_cols:
st.warning("No numerical columns found for clustering.")
else:
cluster_cols = st.multiselect("Select Columns for Clustering", numerical_cols, default=numerical_cols[:2] if len(numerical_cols) >= 2 else numerical_cols)
if cluster_cols:
try:
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df[cluster_cols])
n_clusters = st.slider("Number of Clusters", 2, 10, 3, help="Number of clusters to form.")
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
clusters = kmeans.fit_predict(scaled_data)
df['Cluster'] = clusters
if len(cluster_cols) == 2:
fig = px.scatter(df, x=cluster_cols[0], y=cluster_cols[1], color='Cluster', title="K-Means Clustering")
st.plotly_chart(fig, use_container_width=True)
elif len(cluster_cols) == 3:
fig = px.scatter_3d(df, x=cluster_cols[0], y=cluster_cols[1], z=cluster_cols[2], color='Cluster', title="K-Means Clustering (3D)")
st.plotly_chart(fig, use_container_width=True)
else:
st.write("Clustering visualization is only supported for 2 or 3 selected columns.")
st.success("Clustering applied successfully!")
except Exception as e:
st.error(f"An error occurred during clustering: {e}")
#Add clustering performance in clustering analysis
if len(cluster_cols) >= 2: # Evaluate Silhouette Score
try:
silhouette_avg = silhouette_score(scaled_data, clusters)
st.write(f"Silhouette Score: {silhouette_avg:.4f}")
except:
st.write("Could not compute silhouette score")
#Add dimensionality reduction option and 2d/3d plots
dimension_reduction = st.selectbox("Dimensionality Reduction", ["None", "PCA"])
if dimension_reduction == "PCA":
n_components = st.slider("Number of Components", 2, min(3, len(cluster_cols)), 2)
pca = PCA(n_components=n_components)
principal_components = pca.fit_transform(scaled_data)
pca_df = pd.DataFrame(data=principal_components, columns=[f'PC{i + 1}' for i in range(n_components)])
pca_df['Cluster'] = clusters # Add Cluster
if len(cluster_cols) >= 2: #plotting section
fig = None #Initialize fig
if dimension_reduction == "None":
if len(cluster_cols) == 2:
fig = px.scatter(df, x=cluster_cols[0], y=cluster_cols[1], color='Cluster', title="K-Means Clustering")
st.plotly_chart(fig, use_container_width=True)
elif len(cluster_cols) == 3:
fig = px.scatter_3d(df, x=cluster_cols[0], y=cluster_cols[1], z=cluster_cols[2], color='Cluster', title="K-Means Clustering (3D)")
st.plotly_chart(fig, use_container_width=True)
else:
st.write("Clustering visualization is only supported for 2 or 3 selected columns.")
elif dimension_reduction == "PCA":
if n_components == 2:
fig = px.scatter(pca_df, x='PC1', y='PC2', color='Cluster', title="K-Means Clustering (PCA - 2D)")
st.plotly_chart(fig, use_container_width=True)
elif n_components == 3:
fig = px.scatter_3d(pca_df, x='PC1', y='PC2', z='PC3', color='Cluster', title="K-Means Clustering (PCA - 3D)")
st.plotly_chart(fig, use_container_width=True)
else:
st.write("PCA visualization is only supported for 2 or 3 components.")
elif app_mode == "Neural Network Studio":
st.title("🧠 Neural Network Studio")
if st.session_state.cleaned_data is not None:
df = st.session_state.cleaned_data.copy()
# Target Variable Selection
target_column = st.selectbox("Select Target Variable", df.columns, help="Choose the column you want to predict.")
# Problem Type Selection
problem_type = st.radio("Select Problem Type", ["Regression", "Classification"], help="Choose the type of machine learning problem.")
# Feature Selection (optional)
use_all_features = st.checkbox("Use All Features", value=True, help="Select to use all features for training. Deselect to manually choose features.")
if use_all_features:
feature_columns = df.drop(columns=[target_column]).columns.tolist()
else:
feature_columns = st.multiselect("Select Feature Columns", df.drop(columns=[target_column]).columns, help="Choose the features you want to use for prediction.")
# Model Selection
model_type = st.selectbox("Select Neural Network Model", [
"Simple Neural Network", "Convolutional Neural Network (CNN)", "Recurrent Neural Network (RNN)"
], help="Choose the neural network model to use.")
# Hyperparameter Tuning
with st.expander("Hyperparameter Tuning", expanded=False):
if model_type == "Simple Neural Network":
hidden_layers = st.slider("Number of Hidden Layers", 1, 5, 2, help="Number of hidden layers in the network.")
neurons_per_layer = st.slider("Neurons per Layer", 10, 200, 50, help="Number of neurons in each hidden layer.")
epochs = st.slider("Epochs", 10, 200, 50, help="Number of epochs for training.")
batch_size = st.slider("Batch Size", 16, 128, 32, help="Batch size for training.")
elif model_type == "Convolutional Neural Network (CNN)":
epochs_cnn = st.slider("Epochs", 10, 200, 50, help="Number of epochs for CNN training.")
batch_size_cnn = st.slider("Batch Size", 16, 128, 32, help="Batch size for CNN training.")
elif model_type == "Recurrent Neural Network (RNN)":
epochs_rnn = st.slider("Epochs", 10, 200, 50, help="Number of epochs for RNN training.")
batch_size_rnn = st.slider("Batch Size", 16, 128, 32, help="Batch size for RNN training.")
sequence_length = st.slider("Sequence Length (for RNN)", 10, 100, 30, help="Length of the input sequences for RNN.")
# Train-Test Split
test_size = st.slider("Test Size", 0.1, 0.5, 0.2, help="Proportion of the data to use for testing.")
# Model Training Button
if st.button("Train Neural Network Model"):
with st.spinner("Training neural network model..."):
try:
# Split data
X = df[feature_columns]
y = df[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
# Preprocessing
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='most_frequent')),
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
numeric_features = X_train.select_dtypes(include=np.number).columns
categorical_features = X_train.select_dtypes(include='object').columns
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
X_train_processed = preprocessor.fit_transform(X_train)
X_test_processed = preprocessor.transform(X_test)
# Neural Network Model Selection and Training
tf.random.set_seed(42) # for reproducibility
# Callbacks (Early Stopping)
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
if model_type == "Simple Neural Network":
model = keras.Sequential()
model.add(layers.Input(shape=(X_train_processed.shape[1],)))
for _ in range(hidden_layers):
model.add(layers.Dense(neurons_per_layer, activation=activation)) # Use the selected activation
model.add(
layers.Dense(1 if problem_type == "Regression" else len(np.unique(y_train)),
activation='linear' if problem_type == "Regression" else 'softmax'))
optimizer = keras.optimizers.Adam(learning_rate=learning_rate) # Use the learning rate
model.compile(optimizer=optimizer,
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
history = model.fit(X_train_processed, y_train, epochs=epochs, batch_size=batch_size,
validation_split=0.2, verbose=0,
callbacks=[early_stopping]) # Added early stopping
y_pred = model.predict(X_test_processed)
if problem_type == "Classification":
y_pred = np.argmax(y_pred, axis=1)
elif model_type == "Convolutional Neural Network (CNN)":
X_train_cnn = np.expand_dims(X_train_processed, axis=2)
X_test_cnn = np.expand_dims(X_test_processed, axis=2)
model = keras.Sequential()
model.add(layers.Conv1D(filters=filters, kernel_size=kernel_size, activation='relu',
input_shape=(X_train_cnn.shape[1], 1)))
model.add(layers.MaxPooling1D(pool_size=pooling_size))
model.add(layers.Flatten())
model.add(layers.Dense(50, activation='relu'))
model.add(
layers.Dense(1 if problem_type == "Regression" else len(np.unique(y_train)),
activation='linear' if problem_type == "Regression" else 'softmax'))
optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer,
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
history = model.fit(X_train_cnn, y_train, epochs=epochs_cnn, batch_size=batch_size_cnn,
validation_split=0.2, verbose=0,
callbacks=[early_stopping])
y_pred = model.predict(X_test_cnn)
if problem_type == "Classification":
y_pred = np.argmax(y_pred, axis=1)
elif model_type == "Recurrent Neural Network (RNN)":
try:
X_train_rnn = np.reshape(X_train_processed, (
X_train_processed.shape[0], sequence_length,
X_train_processed.shape[1] // sequence_length))
X_test_rnn = np.reshape(X_test_processed, (
X_test_processed.shape[0], sequence_length, X_test_processed.shape[1] // sequence_length))
model = keras.Sequential()
model.add(layers.SimpleRNN(units, activation='relu', # Use the selected units
dropout=dropout_rate,
input_shape=(X_train_rnn.shape[1], X_train_rnn.shape[2])))
model.add(
layers.Dense(1 if problem_type == "Regression" else len(np.unique(y_train)),
activation='linear' if problem_type == "Regression" else 'softmax'))
optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer,
loss='mse' if problem_type == "Regression" else 'sparse_categorical_crossentropy',
metrics=['mae'] if problem_type == "Regression" else ['accuracy'])
history = model.fit(X_train_rnn, y_train, epochs=epochs_rnn, batch_size=batch_size_rnn,
validation_split=0.2, verbose=0,
callbacks=[early_stopping])
y_pred = model.predict(X_test_rnn)
if problem_type == "Classification":
y_pred = np.argmax(y_pred, axis=1)
except Exception as e:
st.error(f"Error during RNN training: {e}")
st.stop() # Stop execution if RNN fails
# Evaluation
if problem_type == "Regression":
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.write(f"Mean Squared Error: {mse:.4f}")
st.write(f"Root Mean Squared Error: {rmse:.4f}")
st.write(f"Mean Absolute Error: {mae:.4f}")
st.write(f"R-squared: {r2:.4f}")
else:
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted', zero_division=0)
recall = recall_score(y_test, y_pred, average='weighted', zero_division=0)
f1 = f1_score(y_test, y_pred, average='weighted', zero_division=0)
st.write(f"Accuracy: {accuracy:.4f}")
st.write(f"Precision: {precision:.4f}")
st.write(f"Recall: {recall:.4f}")
st.write(f"F1 Score: {f1:.4f}")
st.write("Classification Report:")
st.text(classification_report(y_test, y_pred))
# Visualization
st.subheader("Training History")
fig, ax = plt.subplots() # Use matplotlib directly
ax.plot(history.history['loss'], label='loss')
ax.plot(history.history['val_loss'], label='val_loss')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.legend()
st.pyplot(fig) # Display with st.pyplot
st.success("Model trained successfully!")
except Exception as e:
st.error(f"An error occurred during training: {e}")
except Exception as e:
st.error(f"An error occurred during training: {e}") |