Spaces:
Sleeping
Sleeping
File size: 1,888 Bytes
10f17ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
from datasets import load_dataset
# Load the text dataset from the specified file.
dataset = load_dataset("text", data_files="training.txt")
# Initialize the GPT-2 tokenizer.
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Set the tokenizer's pad token to the EOS token.
tokenizer.pad_token = tokenizer.eos_token
# Define a function to tokenize the dataset and prepare labels.
def tokenize_function(examples):
# Tokenize the text to input_ids, attention_mask
tokenized_inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
# Prepare labels: labels are the same as input_ids for language modeling
tokenized_inputs["labels"] = tokenized_inputs["input_ids"].copy()
return tokenized_inputs
# Tokenize the entire dataset.
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Remove the 'text' column as it's no longer needed after tokenization.
tokenized_datasets = tokenized_datasets.remove_columns(["text"])
# Set the format of the dataset to PyTorch tensors.
tokenized_datasets.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
# Load the GPT-2 model.
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Define training arguments.
training_args = TrainingArguments(
output_dir="./output",
overwrite_output_dir=True,
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# Initialize the Trainer with the training dataset including labels.
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
)
# Start the training process.
trainer.train()
# Save the fine-tuned model and tokenizer.
model.save_pretrained("fine_tuned_gpt2_model")
tokenizer.save_pretrained("fine_tuned_gpt2_model") |