Spaces:
Runtime error
Runtime error
File size: 5,928 Bytes
7f46a81 27e3848 e1c809c 7f46a81 7df25d3 757f0ab 950d936 757f0ab adf3dc3 e1c809c 7f46a81 d26ed68 7f46a81 673067b 0aa3b05 673067b 0aa3b05 7f46a81 5b09a34 7f46a81 c700c96 5b09a34 7f46a81 62170a5 7f46a81 d26ed68 7f46a81 d26ed68 7f46a81 d26ed68 757f0ab 9604f44 f018a1b f2b3842 e48cfb4 4180345 f6bc387 9604f44 f6bc387 8103164 ead5a35 8103164 ead5a35 f6bc387 134de35 24f736a 7f46a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import sys
import toml
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from transformers import pipeline
import numpy as np
import tempfile
import streamlit as st
from PIL import Image
from gtts import gTTS
from io import BytesIO
master_prompt = """
As a Natural Farming Fertilizers Assistant, you will assist the user with any farming related question, always willing to answer any question and provide useful organic farming advice in the following format.
' ' '
** Format is: **
[Short Introduction]
[Nutritional Needs of the user's crops]
[List of plants available locally with the needed nutrients (using the chunks provided.) At least 5 different plants.]
[List of ingredients, quantities of those ingredients needed to fertilize the crop stated, and steps for multiple fertilizer Recipes (using the chunks provided as Bioaccumulators List, you will match plants on the Bioaccumulators List with plants locally growing in the user's area)]
[Give three different sets of recipes using ingredients locally available for free to the user]
[Tables with bioaccumulators data and crop needs data, showing wildcrafted plant nutrient levels and crop nutritional needs, in text table format (not visual)]
[Instructions on using the fertilizers (SOPs)]
[Fertilizer application schedule (step by step in fundamental details) and crop rotation reccomendations]
[Brief Philosophical encouragement related to Natural Farming]
[Alternative set of recipes using localized free ingredients]
[Words of encouragement]
' ' '
User prompt:
"""
#temporary file system created: used to text-to-speech
fp = tempfile.TemporaryFile()
def launch_bot():
def generate_response(question):
response = vq.submit_query(question)
return response
if 'cfg' not in st.session_state:
corpus_ids = str(os.environ['corpus_ids']).split(',')
questions = list(eval(os.environ['examples']))
cfg = OmegaConf.create({
'customer_id': str(os.environ['customer_id']),
'corpus_ids': corpus_ids,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'description': os.environ['description'],
'examples': questions,
'source_data_desc': os.environ['source_data_desc']
})
st.session_state.cfg = cfg
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids)
cfg = st.session_state.cfg
vq = st.session_state.vq
st.set_page_config(page_title=cfg.title, layout="wide")
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.markdown(f"## Welcome to {cfg.title}\n\n"
f"This demo uses an AI organic farming expert and carefully currated library system to achieve greater accuracy in agronomics and agricultural methodology. Created by Copyleft Cultivars, a nonprofit, we hope you enjoy this beta-test early access version.\n\n")
st.markdown("---")
st.markdown(
"## Democratizing access to farming knowledge.\n"
"This app was built with the support of our Patreon subscribers. Thank you! [Click here to join our patreon or upgrade your membership.](https://www.patreon.com/CopyleftCultivarsNonprofit). \n"
)
st.markdown("---")
st.image(image, width=250)
st.markdown(f"<center> <h2> Copyleft Cultivars AI Agriculture Assistant demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
prompt2 = prompt + master_prompt
response = generate_response(prompt2)
# if response == 'The returned results did not contain sufficient information to be summarized into a useful answer for your query. Please try a different search or restate your query differently.':
#st.write("reroute to LLM")
#call in Mistral
prompt3 = master_prompt + prompt2 + "context:" + response
print("Here's where we would call in Mistral")
# ADD IN LLM
# st.write("Mistral:" ) #Needs finishing
# else:
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
audio_result = st.button("Convert to Audio 🔊")
if audio_result:
# st.session_state.messages.append({"role": "user", "content": "Convert to Audio 🔊"})
# with st.chat_message("user"):
# st.write("Convert to Audio 🔊")
with st.popover("Open Audio"):
sound_file = BytesIO()
tts = gTTS(response, lang='en')
tts.write_to_fp(sound_file)
st.audio(sound_file)
st.session_state.messages.append(st.audio(sound_file))
if __name__ == "__main__":
launch_bot()
|