File size: 6,289 Bytes
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6541511
7f46a81
 
f26592e
 
7f46a81
 
 
6541511
 
b4ea488
6541511
b4ea488
6541511
5fc81fd
7f46a81
 
 
b4ea488
 
f26592e
 
 
5cebf82
 
7f46a81
 
b4ea488
7f46a81
 
 
 
 
 
d56438d
7f46a81
 
7ff5239
6541511
7f46a81
6541511
7f46a81
39e2176
 
108fa2c
8f83356
108fa2c
 
 
 
 
 
39e2176
8f83356
 
af523d4
8f83356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d7f02
8f83356
 
af523d4
8f83356
 
 
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26592e
7f46a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.conv_id = None

    def submit_query(self, query_str: str):
        corpora_key_list = [{
                'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
            } for corpus_id in self.corpus_ids
        ]

        endpoint = f"https://api.vectara.io/v1/query"
        start_tag = "%START_SNIPPET%"
        end_tag = "%END_SNIPPET%"
        headers = {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": str(self.customer_id),
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
        body = {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': start_tag,
                        'end_tag': end_tag,
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725718,
                        'mmrConfig': {
                            'diversityBias': 0.3
                        }
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 5,
                            'summarizerPromptName': 'vectara-experimental-summary-ext-2023-12-11-sml',
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                            'debug': True,
                        }
                    ]
                } 
            ]
        }
        
        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, I'm experiencing an error. Please report this and try again later."

        res = response.json()

        top_k = 10
        summary = res['responseSet'][0]['summary'][0]['text']
        responses = res['responseSet'][0]['response'][:top_k]
        docs = res['responseSet'][0]['document']
        chat = res['responseSet'][0]['summary'][0]['chat']

#        if chat['status'] != None:
#  #          chat['status'] =  # I have no idea what to put here hahaha
 #           st_code = chat['status']
  #          print(f"Chat query failed with code {st_code}")
   #         if st_code == 'RESOURCE_EXHAUSTED':
    #            self.conv_id = None
     #              return 'Sorry, chat turns exceeds plan limit.'
      #      return 'Sorry, something went wrong in my brain. Please try again later.'
        
#Another Bard patch for diagnostics

        try:
        # Step 1a: Check for 'responseSet'
            if res is not None and 'responseSet' in res:
                response_set = res['responseSet']
        
                # Step 1b: Check for 'summary' within the first item
                if len(response_set) > 0 and 'summary' in response_set[0]:
                    summary = response_set[0]['summary']
        
                    # Step 1c: Check for 'chat' within the first summary
                    if len(summary) > 0 and 'chat' in summary[0]:
                        chat = summary[0]['chat']
        
                        # Step 1d: Finally, access 'conversationId'
                        self.conv_id = chat['conversationId']
                    else:
                        # Handle missing 'chat' in summary
                        print("Chat data not found in response summary")
                else:
                    # Handle missing or empty 'summary'
                    print("Response summary missing or empty")
            else:
                # Handle missing or empty 'responseSet'
                print("Response data unavailable")
        except (TypeError):
            # Handle TypeError if any of the access attempts fail
            print('Sorry, something went wrong. Please try again later.')

        
#End diagnostics
        
        pattern = r'\[\d{1,2}\]'
        matches = [match.span() for match in re.finditer(pattern, summary)]

        # figure out unique list of references
        refs = []
        for match in matches:
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            if url not in refs:
                refs.append(url)

        # replace references with markdown links
        refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
        for match in reversed(matches):
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
            url = f"{metadata['url']}#:~:text={quote(text)}"
            citation_inx = refs_dict[url]
            summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]

        return summary