File size: 5,097 Bytes
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d6776
7f46a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6541511
7f46a81
 
f26592e
 
7f46a81
 
 
6541511
 
b4ea488
6541511
b4ea488
6541511
5fc81fd
7f46a81
 
 
b4ea488
174d975
f26592e
a719df1
c10340e
5cebf82
174d975
7f46a81
 
b4ea488
7f46a81
 
 
 
 
 
d56438d
7f46a81
 
7ff5239
6541511
7f46a81
6541511
7f46a81
39e2176
 
4274570
 
 
 
 
 
 
a7d6776
 
 
98e93ad
87b3e89
8f83356
7f46a81
 
 
 
 
 
 
 
 
 
 
72c21fd
c612e11
 
7f46a81
 
c612e11
7f46a81
 
 
 
 
 
72c21fd
c612e11
 
f26592e
7f46a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import requests
import json
import re
from urllib.parse import quote

def extract_between_tags(text, start_tag, end_tag):
    start_index = text.find(start_tag)
    end_index = text.find(end_tag, start_index)
    return text[start_index+len(start_tag):end_index-len(end_tag)]

class VectaraQuery():
    def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.conv_id = None

    def submit_query(self, query_str: str):
        corpora_key_list = [{
                'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
            } for corpus_id in self.corpus_ids
        ]

        endpoint = f"https://api.vectara.io/v1/query"
        start_tag = "%START_SNIPPET%"
        end_tag = "%END_SNIPPET%"
        headers = {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": str(self.customer_id),
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
        body = {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': start_tag,
                        'end_tag': end_tag,
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725718,
                        'mmrConfig': {
                            'diversityBias': 0.3
                        }
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 5,
                          #  'summarizerPromptName': 'vectara-experimental-summary-ext-2023-12-11-sml',
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                           # 'debug': True,
                        }
                    ]
                } 
            ]
        }
        
        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, I'm experiencing an error. Please report this and try again later."

        res = response.json()

        top_k = 10
        summary = res['responseSet'][0]['summary'][0]['text']
        responses = res['responseSet'][0]['response'][:top_k]
        docs = res['responseSet'][0]['document']
        chat = res['responseSet'][0]['summary'][0]['chat']

#        if len(chat['status']) <= 0:
 #           st_code = chat['status']
  #          print(f"Chat query failed with code {st_code}")
   #         if st_code == 'RESOURCE_EXHAUSTED':
    #            self.conv_id = None
     #           return 'Sorry, Vectara chat turns exceeds plan limit.'
      #      return 'Sorry, something went wrong in my brain. Please try again later.'
        
        try:
            self.conv_id = res['responseSet'][0]['summary'][0]['chat']['conversationId']
        except (TypeError):
            return "I'm sorry. I am experiencing an error in Vectara API conversationId assignment"
        
        pattern = r'\[\d{1,2}\]'
        matches = [match.span() for match in re.finditer(pattern, summary)]

        # figure out unique list of references
        refs = []
        for match in matches:
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
 # for source citing          url = f"{metadata['url']}#:~:text={quote(text)}"
  #          if url not in refs:
   #             refs.append(url)

        # replace references with markdown links
    #    refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
        for match in reversed(matches):
            start, end = match
            response_num = int(summary[start+1:end-1])
            doc_num = responses[response_num-1]['documentIndex']
            metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
            text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
 # for source citing           url = f"{metadata['url']}#:~:text={quote(text)}"
  #          citation_inx = refs_dict[url]
            summary = summary[:start] + summary[end:]

        return summary