File size: 6,421 Bytes
63c0c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# import all related modules
from openai import OpenAI
import json
from pypdf import PdfReader
from environment import api_key, ai_model, resume_file, summary_file, name, ratelimit_api, request_token
from pushover import Pushover
import requests
from exception import RateLimitError


class Chatbot:
    __openai = OpenAI(api_key=api_key)

    # define tools setup for OpenAI
    def __tools(self):
        details_tools_define = {
            "user_details": {
                "name": "record_user_details",
                "description": "Usee this tool to record that a user is interested in being touch and provided an email address",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "email": {
                            "type": "string",
                            "description": "Email address of this user"
                        },
                        "name": {
                            "type": "string",
                            "description": "Name of this user, if they provided"
                        },
                        "notes": {
                            "type": "string",
                            "description": "Any additional information about the conversation that's worth recording to give context"
                        }
                    },
                    "required": ["email"],
                    "additionalProperties": False
                }
            },
            "unknown_question": {
                "name": "record_unknown_question",
                "description": "Always use this tool to record any question that couldn't answered as you didn't know the answer",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "question": {
                            "type": "string",
                            "description": "The question that couldn't be answered"
                        }
                    },
                    "required": ["question"],
                    "additionalProperties": False
                }
            }
        }

        return [{"type": "function", "function": details_tools_define["user_details"]}, {"type": "function", "function": details_tools_define["unknown_question"]}]

    # handle calling of tools
    def __handle_tool_calls(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)

            pushover = Pushover()

            tool = getattr(pushover, tool_name, None)
            # tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool", "content": json.dumps(result), "tool_call_id": tool_call.id})

        return results



    # read pdf document for the resume
    def __get_summary_by_resume(self):
        reader = PdfReader(resume_file)
        linkedin = ""
        for page in reader.pages:
            text = page.extract_text()
            if text:
                linkedin += text

        with open(summary_file, "r", encoding="utf-8") as f:
            summary = f.read()

        return {"summary": summary, "linkedin": linkedin}


    def __get_prompts(self):
        loaded_resume = self.__get_summary_by_resume()
        summary = loaded_resume["summary"]
        linkedin = loaded_resume["linkedin"]

        # setting the prompts
        system_prompt = f"You are acting as {name}. You are answering question on {name}'s website, particularly question related to {name}'s career, background, skills and experiences." \
            f"You responsibility is to represent {name} for interactions on the website as faithfully as possible." \
            f"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions." \
            "Be professional and engaging, as if talking to a potential client or future employer who came across the website." \
            "If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career." \
            "If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool." \
            f"\n\n## Summary:\n{summary}\n\n## LinkedIn Profile:\n{linkedin}\n\n" \
            f"With this context, please chat with the user, always staying in character as {name}."

        return system_prompt

    # chatbot function
    def chat(self, message, history):
        try:
            # implementation of ratelimiter here
            response = requests.post(
                ratelimit_api,
                json={"token": request_token}
            )
            status_code = response.status_code

            if (status_code == 429):
                raise RateLimitError()

            elif (status_code != 201):
                raise Exception(f"Unexpected status code from rate limiter: {status_code}")

            system_prompt = self.__get_prompts()
            tools = self.__tools();

            messages = []
            messages.append({"role": "system", "content": system_prompt})
            messages.extend(history)
            messages.append({"role": "user", "content": message})

            done = False

            while not done:
                response = self.__openai.chat.completions.create(model=ai_model, messages=messages, tools=tools)

                finish_reason = response.choices[0].finish_reason

                if finish_reason == "tool_calls":
                    message = response.choices[0].message
                    tool_calls = message.tool_calls
                    results = self.__handle_tool_calls(tool_calls=tool_calls)
                    messages.append(message)
                    messages.extend(results)
                else:
                    done = True

            return response.choices[0].message.content
        except RateLimitError as rle:
            return rle.message

        except Exception as e:
            print(f"Error: {e}")
            return f"Something went wrong! {e}"