Spaces:
Runtime error
Runtime error
File size: 16,247 Bytes
6f2ec28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# List of requirements
# torch~=1.13
# torchvision
# opencv-python
# scipy
# numpy
# tqdm
# timm
# einops
# scikit-video
# pillow
# logger
# diffusers
# transformers
# accelerate
# requests
# pycocoevalcap
import os
import torch
import cv2
import numpy as np
from PIL import Image
from transformers import CLIPProcessor, CLIPModel, AutoTokenizer
import time
import logging
from tqdm import tqdm
import argparse
import torchvision.transforms as transforms
from torchvision.transforms import Resize
from torchvision.utils import save_image
from diffusers import StableDiffusionXLPipeline
import requests
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import ipdb
from pycocoevalcap.cider.cider import Cider
from pycocoevalcap.bleu.bleu import Bleu
def calculate_clip_score(video_path, text, model, tokenizer):
# Load the video
cap = cv2.VideoCapture(video_path)
# Extract frames from the video
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
frames.append(resized_frame)
# Convert numpy arrays to tensors, change dtype to float, and resize frames
tensor_frames = [torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames]
# Initialize an empty tensor to store the concatenated features
concatenated_features = torch.tensor([], device=device)
# Generate embeddings for each frame and concatenate the features
with torch.no_grad():
for frame in tensor_frames:
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
frame_features = model.get_image_features(frame_input)
concatenated_features = torch.cat((concatenated_features, frame_features), dim=0)
# Tokenize the text
text_tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=77)
# Convert the tokenized text to a tensor and move it to the device
text_input = text_tokens["input_ids"].to(device)
# Generate text embeddings
with torch.no_grad():
text_features = model.get_text_features(text_input)
# Calculate the cosine similarity scores
concatenated_features = concatenated_features / concatenated_features.norm(p=2, dim=-1, keepdim=True)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
clip_score_frames = concatenated_features @ text_features.T
# Calculate the average CLIP score across all frames, reflects temporal consistency
clip_score_frames_avg = clip_score_frames.mean().item()
return clip_score_frames_avg
def calculate_clip_temp_score(video_path, model):
# Load the video
cap = cv2.VideoCapture(video_path)
to_tensor = transforms.ToTensor()
# Extract frames from the video
frames = []
SD_images = []
resize = transforms.Resize([224,224])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
frames.append(frame)
tensor_frames = torch.stack([resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames])
# tensor_frames = [extracted_frames[i] for i in range(extracted_frames.size()[0])]
concatenated_frame_features = []
# Generate embeddings for each frame and concatenate the features
with torch.no_grad():
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
frame_feature = model.get_image_features(frame_input)
concatenated_frame_features.append(frame_feature)
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
# Calculate the similarity scores
clip_temp_score = []
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
# ipdb.set_trace()
for i in range(concatenated_frame_features.size()[0]-1):
clip_temp_score.append(concatenated_frame_features[i].unsqueeze(0) @ concatenated_frame_features[i+1].unsqueeze(0).T)
clip_temp_score=torch.cat(clip_temp_score, dim=0)
# Calculate the average CLIP score across all frames, reflects temporal consistency
clip_temp_score_avg = clip_temp_score.mean().item()
return clip_temp_score_avg
def compute_max(scorer, gt_prompts, pred_prompts):
scores = []
for pred_prompt in pred_prompts:
for gt_prompt in gt_prompts:
cand = {0: [pred_prompt]}
ref = {0: [gt_prompt]}
score, _ = scorer.compute_score(ref, cand)
scores.append(score)
return np.max(scores)
def calculate_blip_bleu(video_path, original_text, blip2_model, blip2_processor):
# Load the video
cap = cv2.VideoCapture(video_path)
scorer_cider = Cider()
bleu1 = Bleu(n=1)
bleu2 = Bleu(n=2)
bleu3 = Bleu(n=3)
bleu4 = Bleu(n=4)
# Extract frames from the video
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
frames.append(resized_frame)
# Convert numpy arrays to tensors, change dtype to float, and resize frames
tensor_frames = torch.stack([torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames])
# Get five captions for one video
Num = 5
captions = []
# for i in range(Num):
N = len(tensor_frames)
indices = torch.linspace(0, N - 1, Num).long()
extracted_frames = torch.index_select(tensor_frames, 0, indices)
for i in range(Num):
frame = extracted_frames[i]
inputs = blip2_processor(images=frame, return_tensors="pt").to(device, torch.float16)
generated_ids = blip2_model.generate(**inputs)
generated_text = blip2_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
captions.append(generated_text)
original_text = [original_text]
cider_score = (compute_max(scorer_cider, original_text, captions))
bleu1_score = (compute_max(bleu1, original_text, captions))
bleu2_score = (compute_max(bleu2, original_text, captions))
bleu3_score = (compute_max(bleu3, original_text, captions))
bleu4_score = (compute_max(bleu4, original_text, captions))
blip_bleu_caps_avg = (bleu1_score + bleu2_score + bleu3_score + bleu4_score)/4
return blip_bleu_caps_avg
def calculate_sd_score(video_path, text, pipe, model):
# Load the video
output_dir = "../../SDXL_Imgs"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
cap = cv2.VideoCapture(video_path)
to_tensor = transforms.ToTensor()
# Extract frames from the video
frames = []
SD_images = []
Num = 5
resize = transforms.Resize([224,224])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
frames.append(frame)
# Load SD imgs from local paths
for i in range(Num): ## Num images for every prompt
output_dir = "../../SDXL_Imgs"
# ipdb.set_trace()
SD_image_path = os.path.join(output_dir, f"{os.path.basename(video_path).split('.')[0]}_{i}.png")
if os.path.exists(SD_image_path):
image = Image.open(SD_image_path)
# Convert the image to a tensor
image = resize(to_tensor(image))
SD_images.append(image.unsqueeze(0))
else:
image = pipe(text, height = 512, width= 512, num_inference_steps = 20).images[0] #!!!!! same amount of SD images, but also can be mutiple times, TODO
# Convert the image to a tensor
image = resize(to_tensor(image))
SD_images.append(image.unsqueeze(0))
save_image(image,SD_image_path)
tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames]
SD_images = torch.cat(SD_images, 0)
concatenated_frame_features = []
concatenated_SDImg_features = []
# Generate embeddings for each frame and concatenate the features
with torch.no_grad():
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
frame_feature = model.get_image_features(frame_input)
concatenated_frame_features.append(frame_feature)
for i in range(SD_images.size()[0]):
img = SD_images[i].unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
SDImg_feature = model.get_image_features(img)
concatenated_SDImg_features.append(SDImg_feature)
# ipdb.set_trace()
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
concatenated_SDImg_features = torch.cat(concatenated_SDImg_features, dim=0)
# Calculate the similarity scores
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
concatenated_SDImg_features = concatenated_SDImg_features / concatenated_SDImg_features.norm(p=2, dim=-1, keepdim=True)
sd_score_frames = concatenated_frame_features @ concatenated_SDImg_features.T
# Calculate the average CLIP score across all frames, reflects temporal consistency
sd_score_frames_avg = sd_score_frames.mean().item()
return sd_score_frames_avg
def calculate_face_consistency_score(video_path, model):
# Load the video
cap = cv2.VideoCapture(video_path)
to_tensor = transforms.ToTensor()
# Extract frames from the video
frames = []
SD_images = []
resize = transforms.Resize([224,224])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size
frames.append(frame)
tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames]
concatenated_frame_features = []
# Generate embeddings for each frame and concatenate the features
with torch.no_grad():
for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory
frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device
frame_feature = model.get_image_features(frame_input)
concatenated_frame_features.append(frame_feature)
concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0)
# Calculate the similarity scores
concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True)
face_consistency_score = concatenated_frame_features[1:] @ concatenated_frame_features[0].unsqueeze(0).T
# Calculate the average CLIP score across all frames, reflects temporal consistency
face_consistency_score_avg = face_consistency_score.mean().item()
return face_consistency_score_avg
def read_text_file(file_path):
with open(file_path, 'r') as f:
return f.read().strip()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dir_videos", type=str, default='', help="Specify the path of generated videos")
parser.add_argument("--metric", type=str, default='celebrity_id_score', help="Specify the metric to be used")
args = parser.parse_args()
dir_videos = args.dir_videos
metric = args.metric
dir_prompts = '../../prompts/'
video_paths = [os.path.join(dir_videos, x) for x in os.listdir(dir_videos)]
prompt_paths = [os.path.join(dir_prompts, os.path.splitext(os.path.basename(x))[0]+'.txt') for x in video_paths]
# Create the directory if it doesn't exist
timestamp = time.strftime("%Y%m%d-%H%M%S")
os.makedirs(f"../../results", exist_ok=True)
# Set up logging
log_file_path = f"../../results/{metric}_record.txt"
# Delete the log file if it exists
if os.path.exists(log_file_path):
os.remove(log_file_path)
# Set up logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# File handler for writing logs to a file
file_handler = logging.FileHandler(filename=f"../../results/{metric}_record.txt")
file_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
logger.addHandler(file_handler)
# Stream handler for displaying logs in the terminal
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
logger.addHandler(stream_handler)
# Load pretrained models
device = "cuda" if torch.cuda.is_available() else "cpu"
if metric == 'blip_bleu':
blip2_processor = AutoProcessor.from_pretrained("../../checkpoints/blip2-opt-2.7b")
blip2_model = Blip2ForConditionalGeneration.from_pretrained("../../checkpoints/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
elif metric == 'sd_score':
clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device)
clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32")
output_dir = "/apdcephfs/share_1290939/raphaelliu/Vid_Eval/Video_Gen/prompt700-release/SDXL_Imgs"
SD_image_path = os.path.join(output_dir, f"{os.path.basename(os.path.basename(video_paths[0]).split('.')[0])}_0.png")
# if os.path.exists(SD_image_path):
# pipe = None
# else:
pipe = StableDiffusionXLPipeline.from_pretrained(
"../../checkpoints/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe = pipe.to(device)
else:
clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device)
clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32")
# Calculate SD scores for all video-text pairs
scores = []
test_num = 10
test_num = len(video_paths)
count = 0
for i in tqdm(range(len(video_paths))):
video_path = video_paths[i]
prompt_path = prompt_paths[i]
if count == test_num:
break
else:
text = read_text_file(prompt_path)
# ipdb.set_trace()
if metric == 'clip_score':
score = calculate_clip_score(video_path, text, clip_model, clip_tokenizer)
elif metric == 'blip_bleu':
score = calculate_blip_bleu(video_path, text, blip2_model, blip2_processor)
elif metric == 'sd_score':
score = calculate_sd_score(video_path, text, pipe,clip_model)
elif metric == 'clip_temp_score':
score = calculate_clip_temp_score(video_path,clip_model)
elif metric == 'face_consistency_score':
score = calculate_face_consistency_score(video_path,clip_model)
count+=1
scores.append(score)
average_score = sum(scores) / len(scores)
# count+=1
logging.info(f"Vid: {os.path.basename(video_path)}, Current {metric}: {score}, Current avg. {metric}: {average_score}, ")
# Calculate the average SD score across all video-text pairs
logging.info(f"Final average {metric}: {average_score}, Total videos: {len(scores)}") |