File size: 5,851 Bytes
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554d8e7
cc50ae5
554d8e7
1cebbb0
cc50ae5
 
 
 
 
 
 
554d8e7
 
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554d8e7
cc50ae5
 
 
554d8e7
cc50ae5
 
 
 
 
 
 
 
554d8e7
cc50ae5
554d8e7
 
 
 
 
 
 
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554d8e7
cc50ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554d8e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import torch
import os
import spaces
import uuid

from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image

# Constants
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism",
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
    raise NotImplementedError("No GPU detected!")

device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# Safety checkers
from transformers import CLIPFeatureExtractor

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") # change for open-source model

# Function: we are using Gradio server to queue calls. However this is open for different architectures 
@spaces.GPU(duration=15,enable_queue=True)
def generate_image(prompt, base, motion, step, progress=gr.Progress()):
    global step_loaded
    global base_loaded
    global motion_loaded
    print(prompt, base, step)

    if step_loaded != step:
        repo = "ByteDance/AnimateDiff-Lightning" # we can change to other Diffusion models...
        ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" #...but you must change the implementation at this point to match with the checkpoint
        pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
        step_loaded = step

    if base_loaded != base:
        pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
        base_loaded = base

    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        motion_loaded = motion

    progress((0, step))
    
    def progress_callback(i, t, z):
        progress((i+1, step))

    output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1) #providing visibility to progress. Useful if using gradio interface

    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    export_to_video(output.frames[0], path, fps=10)
    return path


# Gradio Interface
with gr.Blocks(css="style.css", theme='sudeepshouche/minimalist') as syntvideo:
    gr.HTML(
        "<h1><center>MAGIC Demo: synthetic video generation application</center></h1>" +
        "<p><center><span style='color: red;'>Change the steps from 4 to 8 to get better results.</center></p>" +
        "<p><center>Write prompts in style as given in the examples below:</center></p>" +
        "<p><center>Focus: Group of Birds in sky (Animate:  Birds Moving) (Shot From distance)</center></p>" +
        "<p><center>Focus: Trees In forest (Animate: Lion running)</center></p>" +
        "<p><center>Focus: Kids Playing (Season: Winter)</center></p>" +
        "<p><center>Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)</center></p>"
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(
                label='Prompt'
            )
        with gr.Row():
            select_base = gr.Dropdown(
                label='Base model',
                choices=[
                    "Cartoon", 
                    "Realistic",
                    "3d",
                    "Anime",
                ],
                value=base_loaded,
                interactive=True
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="guoyww/animatediff-motion-lora-zoom-in",
                interactive=True
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[
                    ('1-Step', 1), 
                    ('2-Step', 2),
                    ('4-Step', 4),
                    ('8-Step', 8),
                ],
                value=4,
                interactive=True
            )
            submit = gr.Button(
                scale=1,
                variant='primary'
            )
    video = gr.Video(
        label='Generate Synthetic Video',
        autoplay=True,
        height=512,
        width=512,
        elem_id="video_output"
    )

    prompt.submit(
        fn=generate_image,
        inputs=[prompt, select_base, select_motion, select_step],
        outputs=video,
    )
    submit.click(
        fn=generate_image,
        inputs=[prompt, select_base, select_motion, select_step],
        outputs=video,
    )

syntvideo.queue().launch()