File size: 14,035 Bytes
ea93d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4c3c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import nltk
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
import torch
from sentence_transformers import SentenceTransformer, util
from bert_score import score
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge import Rouge
from tqdm import tqdm
from datasets import load_metric

# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')

# --- Model and Metric Loading ---
class ContentEvaluator:
    def __init__(self):
        self.semantic_similarity_model = SentenceTransformer('neuralmind/bert-large-portuguese-cased')
        self.perplexity_model_name = "unicamp-dl/ptt5-base-portuguese-vocab"
        self.perplexity_tokenizer = AutoTokenizer.from_pretrained(self.perplexity_model_name)

        # Load Hugging Face metrics
        self.bertscore_metric = load_metric("bertscore")
        self.bleu_metric = load_metric("bleu")
        self.rouge_metric = load_metric("rouge")
        self.meteor_metric = load_metric("meteor")
        self.sacrebleu_metric = load_metric("sacrebleu")  # More robust BLEU implementation

        # Load a powerful LLM for judging content and detecting hallucinations
        self.judge_model_name = "gpt-3.5-turbo"  # Gemini Or GPT-4 if available
        self.judge = pipeline("text-generation", model=self.judge_model_name)

    
    def calculate_perplexity(self, text):
        """
        Calculates the perplexity of a text using a Portuguese LLM model.

        Perplexity measures how well the language model understands the text. 
        Lower perplexity indicates that the text is more predictable and likely to be grammatically correct.
        Higher perplexity suggests the text is more surprising or unusual, potentially indicating errors or nonsensical content.
        """
        try:
            perplexity_model = AutoModelForCausalLM.from_pretrained(self.perplexity_model_name)
            with torch.no_grad():
                tokenize_input = self.perplexity_tokenizer.tokenize(text)
                tensor_input = self.perplexity_tokenizer.encode(text, return_tensors='pt')
                loss = perplexity_model(tensor_input, labels=tensor_input)[0]
                return torch.exp(loss).item()
        except Exception as e:
            print(f"Error calculating perplexity: {e}")
            return float('inf')


    def detect_hallucination_with_llm(self, text, window_size=200):
        """
        Detects potential hallucinations using an LLM with a refined prompt.
        """
        hallucinations = []
        text_chunks = nltk.word_tokenize(text)

        for i in range(0, len(text_chunks), window_size):
            chunk = " ".join(text_chunks[i:i + window_size])

            prompt = f"""
            You are an expert in identifying factual errors and inconsistencies in educational text.
            Your task is to meticulously analyze the provided text excerpt and pinpoint any potential hallucinations. 

            Focus on identifying claims or statements that exhibit the following characteristics:

            * **Factual Inaccuracy:**  Assertions that are demonstrably false or lack credible supporting evidence.
            * **Logical Fallacies:** Statements containing flawed reasoning or internal contradictions.
            * **Nonsensical Claims:**  Assertions that are absurd, meaningless, or defy common sense.
            * **Invented Information:**  Fabricated details or events that have no basis in reality.

            Text Excerpt:
            ```
            {chunk}
            ```

            For each potential hallucination, provide:
            - **Hallucination:** The specific text you believe is a hallucination.
            - **Explanation:**  A detailed and precise justification for why you classify it as a hallucination.

            Return your analysis as a JSON list of dictionaries, strictly adhering to the following format:

            ```json
            [
              {{"hallucination": "[The hallucinated text]", "explanation": "[Your detailed explanation]"}} 
            ]
            ```
            """
            response = self.judge(prompt, max_length=300)[0]['generated_text'].strip()

            try:
                chunk_hallucinations = eval(response)
                for hallucination in chunk_hallucinations:
                    hallucinations.append({
                        'chunk': chunk,
                        'hallucination': hallucination['hallucination'],
                        'explanation': hallucination['explanation']
                    })
            except Exception as e:
                print(f"Error parsing LLM response: {e}")
                print(f"LLM Response: {response}")

        return hallucinations

    def calculate_metrics(self, generated_text, reference_text):
        """Calculates BERTScore, BLEU, ROUGE, METEOR, and SacreBLEU metrics."""
        results = {}
        try:
            results['bertscore'] = self.bertscore_metric.compute(predictions=[generated_text], references=[reference_text], lang="pt")['f1'][0]
            bleu_results = self.bleu_metric.compute(predictions=[generated_text.split()], references=[[reference_text.split()]])
            results['bleu'] = bleu_results['bleu']
            rouge_results = self.rouge_metric.compute(predictions=[generated_text], references=[reference_text])
            results['rougeL'] = rouge_results['rougeL']
            meteor_results = self.meteor_metric.compute(predictions=[generated_text], references=[reference_text])
            results['meteor'] = meteor_results['meteor']

            # SacreBLEU (more robust BLEU implementation)
            sacrebleu_results = self.sacrebleu_metric.compute(predictions=[generated_text], references=[[reference_text]])
            results['sacrebleu'] = sacrebleu_results['score']

        except Exception as e:
            print(f"Error calculating metrics: {e}")
            results = {'bertscore': None, 'bleu': None, 'rougeL': None, 'meteor': None, 'sacrebleu': None}
        return results

    def analyze_text(self, text, perplexity_threshold=40):
        """
        Analyzes a text for perplexity and potential hallucinations.
        """
        results = []
        sentences = nltk.sent_tokenize(text)

        for i, sentence in enumerate(sentences):
            perplexity = self.calculate_perplexity(sentence)
            hallucinations = self.detect_hallucination_with_llm(sentence)

            issues = []
            if perplexity > perplexity_threshold:
                issues.append(f"- **High Perplexity:** ({perplexity:.2f}) The sentence might be grammatically incorrect or nonsensical.")
            if hallucinations:
                for hallucination in hallucinations:
                    issues.append(f"- **Potential Hallucination (LLM):** {hallucination['hallucination']} - {hallucination['explanation']}")

            review_flag = len(issues) > 0
            explanation = "\n".join(issues) if issues else "No potential issues detected."

            results.append({
                'sentence_index': i,
                'review_flag': review_flag,
                'explanation': explanation,
                'perplexity': perplexity,
                'hallucinations': hallucinations,
                'sentence': sentence
            })

        return results

    def analyze_content_for_review(self, generated_text, reference_text, 
                                 similarity_threshold, 
                                 bertscore_threshold,
                                 bleu_threshold,
                                 rouge_threshold,
                                 meteor_threshold):
        """Analyzes content and flags potential issues based on provided thresholds and LLM judgment."""
        similarity = self.estimate_semantic_similarity(generated_text, reference_text)
        metrics = self.calculate_metrics(generated_text, reference_text)
        llm_judgment = self.get_llm_judgment(generated_text, reference_text)

        issues = []
        if similarity < similarity_threshold:
            issues.append(f"- **Low Semantic Similarity:** ({similarity:.2f}) Content might be off-topic or not factually aligned.")
        if metrics['bertscore'] and metrics['bertscore'] < bertscore_threshold:
            issues.append(f"- **Low BERTScore:** ({metrics['bertscore']:.2f}) There might be factual inaccuracies or significant paraphrasing.")
        if metrics['bleu'] and metrics['bleu'] < bleu_threshold:
            issues.append(f"- **Low BLEU Score:** ({metrics['bleu']:.2f}) The generated text might not be fluent or use appropriate wording.")
        if metrics['rougeL'] and metrics['rougeL'] < rouge_threshold:
            issues.append(f"- **Low ROUGE-L Score:** ({metrics['rougeL']:.2f}) The generated text might not cover important information from the reference.")
        if metrics['meteor'] and metrics['meteor'] < meteor_threshold:
            issues.append(f"- **Low METEOR Score:** ({metrics['meteor']:.2f}) The generated text might have poor word alignment with the reference.")

        # Use LLM judgment as the primary decision-maker
        if llm_judgment == "major issues":
            review_flag = True
            explanation = f"LLM Judgment: **Major Issues**\n" + "\n".join(issues)
        elif llm_judgment == "minor issues":
            review_flag = True
            explanation = f"LLM Judgment: **Minor Issues**\n" + "\n".join(issues)
        else:
            review_flag = False
            explanation = "LLM Judgment: **No Issues**"

        return {
            'review_flag': review_flag,
            'explanation': explanation,
            'semantic_similarity': similarity,
            'metrics': metrics,
            'llm_judgment': llm_judgment,
            'generated_text': generated_text,
            'reference_text': reference_text
        }

# --- Example Usage ---
if __name__ == "__main__":
    evaluator = ContentEvaluator()

    # Example text (replace with your actual data)
    text = """
    A Terra é plana e o Sol gira em torno dela. 
    A gravidade é uma força fraca. 
    As plantas precisam de água para sobreviver.
    A Lua é feita de queijo. 
    Os dinossauros ainda vivem na Amazônia.
    """

    analysis_results = evaluator.analyze_text(text)

    for result in analysis_results:
        print(f"----- Sentence {result['sentence_index'] + 1} -----")
        print(f"Review Flag: {result['review_flag']}")
        print(f"Explanation: {result['explanation']}")
        print(f"Perplexity: {result['perplexity']:.2f}")
        print(f"Sentence: {result['sentence']}\n")

# 2. Content Evaluation Phase (using the best thresholds)
    new_generated_text = evaluator.generate_educational_content("Matemática")
    new_reference_text = "Content from your educational material..."

    evaluation_result = evaluator.analyze_content_for_review(
        new_generated_text, new_reference_text,
        best_thresholds['similarity_threshold'],
        best_thresholds['bertscore_threshold'],
        best_thresholds['bleu_threshold'],
        best_thresholds['rouge_threshold'],
        best_thresholds['meteor_threshold']
    )

    print("\n----- Evaluation Result -----")
    print(f"Review Flag: {evaluation_result['review_flag']}")
    print(f"Explanation: {evaluation_result['explanation']}")


#######
from typing import List, Tuple, Callable

def evaluate_retrieval_precision(
    questions: List[str], 
    system: Callable[[str], List[str]], 
    evaluator: Callable[[str, str], int], 
    num_chunks_expected: int = 3,
    verbose: bool = True
) -> dict:
  """
  Evaluates the retrieval precision of a system using an LLM evaluator.

  Args:
    questions: A list of evaluation questions.
    system: A function that takes a question as input and returns a list of retrieved chunks.
    evaluator: A function that takes a question and a chunk as input and returns a relevance score (0 or 1).
    num_chunks_expected: The number of chunks the system is expected to return. Defaults to 3.
    verbose: Whether to print warnings for questions with fewer returned chunks than expected.

  Returns:
     A dictionary containing:
      - 'mean_precision': The mean retrieval precision score across all questions.
      - 'precision_scores': A list of precision scores for each individual question.
      - 'question_relevance': A list of tuples, where each tuple contains a question and the number of relevant chunks retrieved for that question.

  """

  results = {
      'mean_precision': 0.0,
      'precision_scores': [],
      'question_relevance': [] 
  }

  for i, question in enumerate(questions):
    retrieved_chunks = system(question)

    # Warning if fewer chunks are returned than expected
    if len(retrieved_chunks) < num_chunks_expected and verbose:
      print(f"Warning: System returned {len(retrieved_chunks)} chunks (expected {num_chunks_expected}) for question {i+1}: {question}")

    # Calculate precision for the current question
    relevant_chunks = sum(evaluator(question, chunk) for chunk in retrieved_chunks)
    precision = relevant_chunks / len(retrieved_chunks) if retrieved_chunks else 0  
    results['precision_scores'].append(precision)

    # Store the question and its relevant chunk count
    results['question_relevance'].append((question, relevant_chunks))

  # Calculate mean precision 
  results['mean_precision'] = sum(results['precision_scores']) / len(questions) if questions else 0
  return results

# Example usage (assuming you've defined 'questions', 'system', and 'evaluator'):
evaluation_results = evaluate_retrieval_precision(
    questions, system, evaluator, num_chunks_expected=3, verbose=True
)
print(f"Mean Retrieval Precision: {evaluation_results['mean_precision']:.2f}")
print(f"Precision Scores for Each Question: {evaluation_results['precision_scores']}")
print(f"Question Relevance: {evaluation_results['question_relevance']}")