File size: 11,265 Bytes
a037d13
 
 
 
 
 
 
36319c9
 
 
a037d13
 
36319c9
 
a037d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36319c9
a037d13
 
 
36319c9
a037d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36319c9
 
 
a037d13
 
 
36319c9
a037d13
36319c9
 
a037d13
 
 
 
36319c9
 
 
 
 
 
 
 
 
 
 
a037d13
36319c9
a037d13
 
 
36319c9
 
 
 
 
 
 
 
 
 
 
 
a037d13
 
 
36319c9
 
 
a037d13
36319c9
 
 
a037d13
 
 
36319c9
 
 
a037d13
36319c9
99a4862
a037d13
 
36319c9
a037d13
36319c9
 
a037d13
 
36319c9
 
 
 
 
 
 
 
 
 
a037d13
36319c9
 
 
 
 
 
 
 
 
 
 
 
 
a037d13
 
 
 
 
 
36319c9
a037d13
36319c9
 
a037d13
 
36319c9
a037d13
 
 
36319c9
 
a037d13
36319c9
 
 
a037d13
36319c9
a037d13
36319c9
a037d13
36319c9
a037d13
36319c9
 
 
 
a037d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36319c9
 
a037d13
 
 
 
 
 
 
 
 
 
 
 
 
 
36319c9
a037d13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import time
import pinecone
import pickle
import os
import numpy as np
import hashlib
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from torch import nn
from sentence_transformers.cross_encoder import CrossEncoder
from peft import PeftModel
from sentence_transformers import SentenceTransformer
from bs4 import BeautifulSoup
import requests

headers = {
  "User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
  "Accept":"text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8",
  'Cookie':'CONSENT=YES+cb.20210418-17-p0.it+FX+917; '
}

def google_search(text):
    print(f"Google search on: {text}")
    try:
        site = requests.get(f'https://www.google.com/search?hl=en&q={text}', headers=headers)
        main = BeautifulSoup(site.text, features="html.parser").select_one('#main').select('.VwiC3b.lyLwlc.yDYNvb.W8l4ac')
        res =  '\n\n'.join([m.get_text() for m in main])
    except Exception as ex:
        print(f"Error: {ex}")
        res = ""

    print(f"The result of the google search is: {res}")

    return res

PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")

sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
pinecone.init(api_key=PINECONE_API_KEY, environment="gcp-starter")


CACHE_DIR = "./.cache"
INDEX_NAME = "k8s-semantic-search"

if not os.path.exists(CACHE_DIR):
    os.makedirs(CACHE_DIR)


def cached(func):
    def wrapper(*args, **kwargs):
        SEP = "$|$"
        cache_token = (
            f"{func.__name__}{SEP}"
            f"{SEP.join(str(arg) for arg in args)}{SEP}"
            f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}"
        )

        hex_hash = hashlib.sha256(cache_token.encode()).hexdigest()
        cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}")

        if os.path.exists(cache_filename):
            with open(cache_filename, "rb") as cache_file:
                return pickle.load(cache_file)

        result = func(*args, **kwargs)
        with open(cache_filename, "wb") as cache_file:
            pickle.dump(result, cache_file)

        return result

    return wrapper


@cached
def create_embedding(text: str):
    embed_text = sentencetransformer_model.encode(text)
    
    return embed_text.tolist()

index = pinecone.Index(INDEX_NAME)


def query_from_pinecone(query, top_k=3):
    embedding = create_embedding(query)
    if not embedding:
        return None

    return index.query(vector=embedding, top_k=top_k, include_metadata=True).get("matches")  # gets the metadata (text)


cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")


def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
    results_from_pinecone = query_from_pinecone(query, top_k=top_k)
    if not results_from_pinecone:
        return []

    if verbose:
        print("Query:", query)

    final_results = []

    if re_rank:
        if verbose:
            print("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")

        sentence_combinations = [
            [query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
        ]

        # Compute the similarity scores for these combinations
        similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())

        # Sort the scores in decreasing order
        sim_scores_argsort = reversed(np.argsort(similarity_scores))

        # Print the scores
        for idx in sim_scores_argsort:
            result_from_pinecone = results_from_pinecone[idx]
            final_results.append(result_from_pinecone)
            if verbose:
                print(
                    f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
                )
        return final_results

    if verbose:
        print("Document ID (Hash)\t\tRetrieval Score\tText")
    for result_from_pinecone in results_from_pinecone:
        final_results.append(result_from_pinecone)
        if verbose:
            print(
                f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
            )

    return final_results


def semantic_search(prompt):
    final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
    if not final_results:
        return ""

    return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3])


base_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
lora_model_id = "ComponentSoft/mistral-kubectl-instruct"

tokenizer = AutoTokenizer.from_pretrained(
    lora_model_id,
    padding_side="left",
    add_eos_token=False,
    add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)

base_model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=bnb_config,
    use_cache=True,
    trust_remote_code=True,
)

model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()


def create_stop_criterion(*args):
    term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args]

    class CustomStopCriterion(StoppingCriteria):
        def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
            return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens)

    return CustomStopCriterion()


eval_stop_criterion = create_stop_criterion("</s>", "#End")
category_stop_criterion = create_stop_criterion("</s>", "\n")

start_template = "### Answer:"
command_template = "# Command:"
end_template = "#End"


def text_to_text_generation(verbose, prompt):
    prompt = prompt.strip()

    is_kubectl_prompt = (
        f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
        f"So for instance the following:\n"
        f'text: "List all pods in Kubernetes"\n'
        f"Would get a response:\n"
        f"response (0/1/2): 0 [/INST] \n"
        f'text: "{prompt}"'
        f"response (0/1/2): "
    )

    model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
    with torch.no_grad():
        response = tokenizer.decode(
            model.generate(
                **model_input,
                max_new_tokens=8,
                pad_token_id=tokenizer.eos_token_id,
                repetition_penalty=1.15,
                stopping_criteria=StoppingCriteriaList([category_stop_criterion]),
            )[0],
            skip_special_tokens=True,
        )
    response = response[len(is_kubectl_prompt) :]

    print(f'{" Query Start ":-^40}')
    print("Classified as: " + response)

    response_num = 0 if "0" in response else (1 if "1" in response else 2)

    def generate(response_num, prompt, retriever, verbose):
        match response_num:
            case 0:
                prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"

            case 1:
                if retriever == "semantic_search":
                    retrieved_results = semantic_search(prompt)
                    prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
                elif retriever == "google_search":
                    retrieved_results = google_search(prompt)
                    prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
                else:
                    prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "

            case _:
                prompt = f"[INST] {prompt} [/INST]"

        print("Query:")
        print(prompt)

        # Generate output
        model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
        with torch.no_grad():
            response = tokenizer.decode(
                model.generate(
                    **model_input,
                    max_new_tokens=256,
                    pad_token_id=tokenizer.eos_token_id,
                    repetition_penalty=1.15,
                    stopping_criteria=StoppingCriteriaList([eval_stop_criterion]),
                )[0],
                skip_special_tokens=True,
            )

        decoded_prompt = tokenizer.decode(tokenizer(prompt).input_ids, skip_special_tokens=True)

        start = (
            response.index(start_template) + len(start_template) if start_template in response else len(decoded_prompt)
        )
        start = response.index(command_template) + len(command_template) if command_template in response else start
        end = response.index(end_template) if end_template in response else len(response)

        return response if verbose else response[start:end].strip()

    true_response = generate(response_num, prompt, False, verbose)
    true_response_semantic_search = generate(response_num, prompt, "semantic_search", verbose)
    true_response_google_search = generate(response_num, prompt, "google_search", verbose)


    print("Returned: " + true_response)
    print(f'{" QUERY END ":-^40}')

    match response_num:
        case 0:
            mode = "Kubectl"
        case 1:
            mode = "Kubernetes"
        case _:
            mode = "Normal"

    return (
        f"*Mode*: {mode}",
        f"# Answer\n\n {true_response}",
        f"# Answer with RAG\n\n {true_response_semantic_search}",
        f"# Answer with Google search\n\n {true_response_google_search}"
    )


iface = gr.Interface(
    fn=text_to_text_generation,
    inputs=[
        gr.components.Checkbox(label="Verbose"),
        gr.components.Text(placeholder="prompt here ...", label="Prompt"),
    ],
    outputs=[
        gr.components.Markdown(label="Mode"),
        gr.components.Markdown(label="Answer Without Retriever"),
        gr.components.Markdown(label="Answer With Retriever"),
        gr.components.Markdown(label="Answer With Google search"),
    ],
    allow_flagging="never",
)

iface.launch()