File size: 7,703 Bytes
5fbcf17 7b9c400 5fbcf17 ee7e585 5fbcf17 ee7e585 5fbcf17 ee7e585 5fbcf17 820271c 5fbcf17 5e6feaa 5fbcf17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import numpy as np
import os
import re
import jieba
from io import BytesIO
import datetime
import time
import openai, tenacity
import argparse
import configparser
import json
import tiktoken
import PyPDF2
import gradio
def contains_chinese(text):
for ch in text:
if u'\u4e00' <= ch <= u'\u9fff':
return True
return False
def insert_sentence(text, sentence, interval):
lines = text.split('\n')
new_lines = []
for line in lines:
if contains_chinese(line):
words = list(jieba.cut(line))
separator = ''
else:
words = line.split()
separator = ' '
new_words = []
count = 0
for word in words:
new_words.append(word)
count += 1
if count % interval == 0:
new_words.append(sentence)
new_lines.append(separator.join(new_words))
return '\n'.join(new_lines)
# 定义Reviewer类
class Reviewer:
# 初始化方法,设置属性
def __init__(self, api, review_format, paper_pdf, language):
self.api = api
self.review_format = review_format
self.language = language
self.paper_pdf = paper_pdf
self.max_token_num = 14097
self.encoding = tiktoken.get_encoding("gpt2")
def review_by_chatgpt(self, paper_list):
text = self.extract_chapter(self.paper_pdf)
chat_review_text, total_token_used = self.chat_review(text=text)
return chat_review_text, total_token_used
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_review(self, text):
openai.api_key = self.api # 读取api
review_prompt_token = 1000
try:
text_token = len(self.encoding.encode(text))
except:
text_token = 3000
input_text_index = int(len(text)*(self.max_token_num-review_prompt_token)/(text_token+1))
input_text = "This is the paper for your review:" + text[:input_text_index]
messages=[
{"role": "system", "content": "You are a professional reviewer. Now I will give you a paper. You need to give a complete review opinion according to the following requirements and format:"+ self.review_format + "Be sure to use {} answers".format(self.language)} ,
{"role": "user", "content": input_text + " Translate the output into {}.".format(self.language)},
]
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=messages,
temperature=0.7
)
result = ''
for choice in response.choices:
result += choice.message.content
# result = insert_sentence(result, '**Generated by ChatGPT, no copying allowed!**', 50)
result += "\n\n⚠声明/Ethics statement:\n--以上内容仅供参考,请合理使用本工具!\n--The above content is for reference only. Please use this tool responsibly!"
usage = response.usage.total_tokens
except Exception as e:
# 处理其他的异常
result = "⚠:非常抱歉>_<,生了一个错误:"+ str(e)
usage = 'xxxxx'
print("********"*10)
print(result)
print("********"*10)
return result, usage
def extract_chapter(self, pdf_path):
file_object = BytesIO(pdf_path)
pdf_reader = PyPDF2.PdfReader(file_object)
# 获取PDF的总页数
num_pages = len(pdf_reader.pages)
# 初始化提取状态和提取文本
extraction_started = False
extracted_text = ""
# 遍历PDF中的每一页
for page_number in range(num_pages):
page = pdf_reader.pages[page_number]
page_text = page.extract_text()
# 开始提取
extraction_started = True
page_number_start = page_number
# 如果提取已开始,将页面文本添加到提取文本中
if extraction_started:
extracted_text += page_text
# 停止提取
if page_number_start + 1 < page_number:
break
return extracted_text
def main(api, review_format, paper_pdf, language):
start_time = time.time()
comments = ''
output2 = ''
if not api or not review_format or not paper_pdf:
comments = "⚠:API-key或审稿要求或论文pdf未输入!请检测!"
output2 = "⚠:API-key或审稿要求或论文pdf未输入!请检测!"
# 判断PDF文件
else:
# 创建一个Reader对象
reviewer1 = Reviewer(api, review_format, paper_pdf, language)
# 开始判断是路径还是文件:
comments, total_token_used = reviewer1.review_by_chatgpt(paper_list=paper_pdf)
time_used = time.time() - start_time
output2 ="使用token数:"+ str(total_token_used)+"\n花费时间:"+ str(round(time_used, 2)) +"秒"
return comments, output2
########################################################################################################
# 标题
title = "论文真实性验证"
# 描述
description = '''<div align='center'><p><strong>ChatReviewer是一款基于ChatGPT-3.5的API开发的智能论文分析助手。</strong></p>
<p>其用途如下:</p>
<p>⭐️针对论文内容真实性记性验证,并针对文章内容随机生成问题,提供给学生进行回答,从而让评审人员判断文章是否为学生自行创作。</p>
</div>
'''
# 创建Gradio界面
inp = [gradio.inputs.Textbox(label="请输入你的API-key(sk开头的字符串)",
default="",
type='password'),
gradio.inputs.Textbox(lines=5,
label="请输入特定的分析要求和格式(否则为默认格式)",
default="""Please provide a numbered, specific, detailed, and clear list of questions that is customized to my essay based on the following points:
(1) My motivation for writing this specific essay
(2) Research I've done to support the settings I created in this specific essay
(3) Character development I've done for the characters in this specific essay
(4) My word choices in this specific essay
(5) My writing style in the specific essay
(6) Obstacles I faced in the specific writing process
(7) My takeaways from the specific writing process
These questions should challenge the details of the creative process, the evaluation settings, or additional qualities supporting the my work. The questions should be formulated in a way that allows for a comprehensive evaluation of my essay's originality, creativity and quality after the I have answered them during the oral defense."""
),
gradio.inputs.File(label="请上传论文PDF文件(请务必等pdf上传完成后再点击Submit!)",type="bytes"),
gradio.inputs.Radio(choices=["English", "Chinese", "French", "German","Japenese"],
default="English",
label="选择输出语言"),
]
chat_reviewer_gui = gradio.Interface(fn=main,
inputs=inp,
outputs = [gradio.Textbox(lines=25, label="分析结果"), gradio.Textbox(lines=2, label="资源统计")],
title=title,
description=description)
# Start server
chat_reviewer_gui .launch(quiet=True, show_api=False) |