Spaces:
Sleeping
Sleeping
File size: 1,567 Bytes
a2ae803 dca9cd6 a2ae803 9bd7774 85dd573 a2ae803 9bd7774 960d9a5 a2ae803 e7570e2 a2ae803 9bd7774 3e83dc6 9bd7774 e7570e2 3e83dc6 e7570e2 3e83dc6 e7570e2 e061323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
#from huggingface_hub import InferenceClient
import gradio as gr
from transformers import pipeline
#gr.load("models/grammarly/coedit-large").launch()
# Load the model and tokenizer using the pipeline API
model_pipeline = pipeline("text-generation", model="grammarly/coedit-large")
def generate_text(input_text, history, temperature=0.9, max_new_tokens=50, top_p=0.95, top_k=50):
# Generate text using the model
output = model_pipeline(input_text, temperature=temperature, max_length=max_new_tokens, top_p=top_p, top_k=top_k)
# Extract and return the generated text
return output[0]['generated_text']
additional_inputs=[
gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ),
gr.Slider( label="Max new tokens", value=150, minimum=0, maximum=250, step=64, interactive=True, info="The maximum numbers of new tokens", ),
gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ),
gr.Slider( label="Top-k", value=50, minimum=0, maximum=100, step=1, interactive=True, info="Limits the number of top-k tokens considered at each step"),
]
gr.ChatInterface(
fn=generate_text,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="My Grammarly Space",
concurrency_limit=20,
).launch(show_api=False)
|