File size: 9,566 Bytes
ee96e07 564b273 ee96e07 564b273 2c0bc7b ee96e07 bca671c 0fa1995 c222558 0fa1995 0186a53 ee96e07 564b273 ee96e07 564b273 ee96e07 564b273 ee96e07 2c0bc7b 2bb64b5 2c0bc7b 2bb64b5 2c0bc7b bca671c 2c0bc7b e6a0fdd 564b273 2c0bc7b 9ef50f6 2c0bc7b 564b273 b177ad3 fef584f 564b273 2c0bc7b 564b273 c222558 564b273 c222558 564b273 bca671c 564b273 9361c0b 564b273 966a5f8 d382891 5b83d67 d382891 966a5f8 5b83d67 564b273 2c0bc7b 966a5f8 06554f3 564b273 0fa1995 564b273 0fa1995 564b273 2c0bc7b 564b273 0fa1995 564b273 2c0bc7b 564b273 c222558 564b273 c222558 9361c0b 564b273 9361c0b 564b273 2c0bc7b bca671c 2c0bc7b 3096734 bca671c 3096734 bca671c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import streamlit as st
from datetime import datetime
import json
import requests
import uuid
from datetime import date, datetime
import requests
from pydantic import BaseModel, Field
from typing import Optional
from retriver import retriever
import pandas as pd
import os
df_chunks = pd.read_pickle('Chunks_Complete.pkl')
placeHolderPersona1 = """##Mission
Please create a highly targeted query for a semantic search engine. The query must represent the conversation to date.
** You will be given the converstaion to date in the user prompt.
** If no converstaion provided then this is the first converstaion
##Rules
Ensure the query is concise
Do not respond with anything other than the query for the Semantic Search Engine.
Respond with just a plain string """
class ChatRequestClient(BaseModel):
user_id: str
user_input: str
numberOfQuestions: int
welcomeMessage: str
llm1: str
tokens1: int
temperature1: float
persona1SystemMessage: str
persona2SystemMessage: str
userMessage2: str
llm2: str
tokens2: int
temperature2: float
def genuuid ():
return uuid.uuid4()
def format_elapsed_time(time):
# Format the elapsed time to two decimal places
return "{:.2f}".format(time)
def process_search_results(search_results):
"""
Processes search results to extract and organize metadata and other details.
:param search_results: List of search result matches from Pinecone.
:return: A list of dictionaries containing relevant metadata and scores.
"""
processed_results = []
for result in search_results:
processed_results.append({
"id": result['id'],
"score": result['score'],
"Title": result['metadata'].get('Title', ''),
"ChunkText": result['metadata'].get('ChunkText', ''),
"PageNumber": result['metadata'].get('PageNumber', ''),
"Chunk": result['metadata'].get('Chunk', '')
})
return processed_results
def reconstruct_text_from_chunks(df_chunks):
"""
Reconstructs a single string of text from the chunks in the DataFrame.
:param df_chunks: DataFrame with columns ['Title', 'Chunk', 'ChunkText', 'TokenCount', 'PageNumber', 'ChunkID']
:return: A string combining all chunk texts in order.
"""
return " ".join(df_chunks.sort_values(by=['Chunk'])['ChunkText'].tolist())
def lookup_related_chunks(df_chunks, chunk_id):
"""
Returns all chunks matching the title and page number of the specified chunk ID,
including chunks from the previous and next pages, handling edge cases where
there is no preceding or succeeding page.
:param df_chunks: DataFrame with columns ['Title', 'Chunk', 'ChunkText', 'TokenCount', 'PageNumber', 'ChunkID']
:param chunk_id: The unique ID of the chunk to look up.
:return: DataFrame with all chunks matching the title and page range of the specified chunk ID.
"""
target_chunk = df_chunks[df_chunks['ChunkID'] == chunk_id]
if target_chunk.empty:
raise ValueError("Chunk ID not found")
title = target_chunk.iloc[0]['Title']
page_number = target_chunk.iloc[0]['PageNumber']
# Determine the valid page range
min_page = df_chunks[df_chunks['Title'] == title]['PageNumber'].min()
max_page = df_chunks[df_chunks['Title'] == title]['PageNumber'].max()
page_range = [page for page in [page_number - 1, page_number, page_number + 1] if min_page <= page <= max_page]
return df_chunks[(df_chunks['Title'] == title) & (df_chunks['PageNumber'].isin(page_range))]
def search_and_reconstruct(query, df_chunks, k):
"""
Combines search, lookup of related chunks, and text reconstruction.
:param query: The query string to search for.
:param df_chunks: DataFrame with chunk data.
:param namespace: Pinecone namespace to search within.
:param top_k: Number of top search results to retrieve.
:return: A list of dictionaries with document title, page number, and reconstructed text.
"""
search_results = retriever(query, k)
processed_results = process_search_results(search_results)
reconstructed_results = []
for result in processed_results:
chunk_id = result['id']
related_chunks = lookup_related_chunks(df_chunks, chunk_id)
reconstructed_text = reconstruct_text_from_chunks(related_chunks)
reconstructed_results.append({
"Title": result['Title'],
"score": result['score'],
"PageNumber": result['PageNumber'],
"ReconstructedText": reconstructed_text
})
return reconstructed_results
def call_chat_api(data: ChatRequestClient, k):
url = "https://agent-builder-api.greensea-b20be511.northeurope.azurecontainerapps.io/chat/"
# Validate and convert the data to a dictionary
validated_data = data.dict()
# Make the POST request to the FastAPI server
response = requests.post(url, json=validated_data)
if response.status_code == 200:
body = response.json()
query = body.get("content")
final_results = search_and_reconstruct(query, df_chunks, k)
return body, final_results # Return the JSON response if successful
else:
return "An error occured" # Return the raw response text if not successful
# Title of the application
# st.image('agentBuilderLogo.png')
st.title('RAG Design and Evaluator')
# Sidebar for inputting personas
st.sidebar.image('cognizant_logo.jpg')
st.sidebar.header("Query Designer")
# st.sidebar.subheader("Welcome Message")
# welcomeMessage = st.sidebar.text_area("Define Intake Persona", value=welcomeMessage, height=300)
st.sidebar.subheader("Query Designer Config")
# numberOfQuestions = st.sidebar.slider("Number of Questions", min_value=0, max_value=10, step=1, value=5, key='persona1_questions')
persona1SystemMessage = st.sidebar.text_area("Query Designer System Message", value=placeHolderPersona1, height=300)
llm1 = st.sidebar.selectbox("Model Selection", ['GPT-4', 'GPT3.5'], key='persona1_size')
temp1 = st.sidebar.slider("Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.6, key='persona1_temp')
tokens1 = st.sidebar.slider("Tokens", min_value=0, max_value=4000, step=100, value=500, key='persona1_tokens')
k = st.sidebar.slider("Returned Docs", min_value=1, max_value=10, step=1, value=3, key='k')
st.sidebar.caption(f"Session ID: {genuuid()}")
# Main chat interface
st.markdown("""#### Query Translation in RAG Architecture
Query translation in a Retrieval-Augmented Generation (RAG) architecture is the process where an LLM acts as a translator between the user's natural language input and the retrieval system.
##### Key Functions of Query Translation:
1. **Adds Context**
The LLM enriches the user's input with relevant context (e.g., expanding vague questions or specifying details) to make it more precise.
2. **Converts to Concise Query**
The LLM reformulates the input into a succinct and effective query optimized for the retrieval system's semantic search capabilities.
3. **Uses Concise Query to serach Vector DB**
The query is used to search the vector DB for suitable grounding information.
##### Purpose
This ensures that the retrieval system receives a clear and focused query, increasing the relevance of the information it retrieves. The query translator acts as a bridge between human conversational language and the technical requirements of a semantic retrieval system.""")
# User ID Input
user_id = st.text_input("Experiment ID:", key="user_id")
# Ensure user_id is defined or fallback to a default value
if not user_id:
st.warning("Please provide an experiment ID to start the chat.")
else:
# Initialize chat history in session state
if "messages" not in st.session_state:
st.session_state.messages = []
retrival = []
response = {}
if user_input := st.chat_input("Start chat:"):
st.session_state.messages.append({"role": "user", "content": user_input})
data = ChatRequestClient(
user_id=user_id,
user_input=user_input,
numberOfQuestions=1000,
welcomeMessage="",
llm1=llm1,
tokens1=tokens1,
temperature1=temp1,
persona1SystemMessage=persona1SystemMessage,
persona2SystemMessage="",
userMessage2="",
llm2="GPT3.5",
tokens2=1000,
temperature2=0.2
)
response, retrival = call_chat_api(data, k)
agent_message = response.get("content", "No response received from the agent.")
elapsed_time = response.get("elapsed_time", 0)
st.session_state.messages.append({"role": "assistant", "content": agent_message})
col1, col2 = st.columns(2)
with col1:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if response:
st.chat_message("assistant").markdown(response.get("content", "No response"))
st.caption(f"##### Time taken: {format_elapsed_time(response.get('elapsed_time', 0))} seconds")
with col2:
for entry in retrival:
with st.container():
st.write(f"**Title:** {entry['Title']}")
st.write(f"**Score** {entry['score']}")
st.write(f"**Page Number:** {entry['PageNumber']}")
st.write("Grounding Text", entry['ReconstructedText'], height=150) |