File size: 6,864 Bytes
4fe8a03
 
 
 
 
7cffecf
 
 
4fe8a03
7cffecf
f3f2130
fa3596e
 
7cffecf
fa3596e
4fe8a03
 
 
 
 
 
7cffecf
78ed805
fa3596e
 
da68b17
fa3596e
 
e9a8ede
 
fa3596e
2274ab7
fb6ebd2
 
e9a8ede
4fe8a03
fa3596e
4fe8a03
317bb33
4fe8a03
317bb33
 
 
 
 
 
 
4fe8a03
6fd306e
58d82ec
 
c652a61
e9a8ede
4fe8a03
dd7f2cf
4fe8a03
 
 
532e36c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317bb33
31695fc
 
 
 
 
 
 
 
 
532e36c
 
9562d14
4fe8a03
 
2274ab7
 
 
 
 
7cffecf
b72bc42
532e36c
 
7cffecf
bd32352
 
 
 
 
 
 
 
 
 
 
 
317bb33
86c77f9
 
9562d14
86c77f9
532e36c
bd32352
 
4fe8a03
 
07170ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039819f
7cffecf
 
 
 
532e36c
31695fc
 
7cffecf
86c77f9
7cffecf
532e36c
7cffecf
 
532e36c
7cffecf
 
86c77f9
532e36c
7cffecf
31695fc
 
 
7cffecf
 
07170ba
f9ba236
 
 
 
 
2274ab7
 
 
 
 
d2281a3
e74f020
ea94c7e
c1b0716
c854dc6
4fe8a03
a297e9a
c1b0716
b7956c7
344e7b1
b7956c7
8cafaa1
6b5276f
 
89f00b4
7cffecf
774449d
31695fc
f8536a9
 
0b0b1c0
7ef424f
ab32890
7ef424f
 
ab32890
7ef424f
f8536a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
from ecogsphere import ecf

import pandas as pd 
import math
import json

#import sqlite3
#import huggingface_hub
#import pandas as pd
#import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler

import random
import time
#import requests

#from huggingface_hub import hf_hub_download
#repo = huggingface_hub.HfRepository(repo_id="lysandre/test-model", token=token)

# Clone the repository to a local directory
#repo.clone_from_hub()
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")

#from huggingface_hub import login
from datasets import load_dataset

#dataset = load_dataset("csv", data_files="./data.csv")


#DB_FILE = "./reviewsitr.db"

#TOKEN = os.environ.get('HF_KEY')

#repo = huggingface_hub.Repository(
#    local_dir="data",
#    repo_type="dataset",
#    clone_from="CognitiveScience/csdhdata",
#    use_auth_token=TOKEN
#)
#repo.git_pull()

#TOKEN2 = HF_TOKEN


#login(token=TOKEN2)

# Set db to latest
#shutil.copyfile("./reviews.db", DB_FILE)

# Create table if it doesn't already exist

#db = sqlite3.connect(DB_FILE)
#try:
#    db.execute("SELECT * FROM reviews").fetchall()
#    #db.execute("SELECT * FROM reviews2").fetchall()
#
#    db.close()
#except sqlite3.OperationalError:
#    db.execute(
#        '''
#        CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
#                              created_at TIMESTAMP DEFAULT (datetime('now', 'localtime', '+3 hours')) NOT NULL,
#                              name TEXT, view TEXT, duration TEXT)
#        ''')
#    db.commit()
#    db.close()

#    db = sqlite3.connect(DB_FILE)
# #created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
def get_latest_reviews(celsci2): #db: sqlite3.Connection):
    try:
        celsci2=ecf(celsci2)
        df=pd.DataFrame.from_dict(celsci2["videos"])
        reviews = df.DataFrame(reviews, columns=["id", "date_created", "name", "view", "duration"])

    except: # sqlite3.OperationalError:
        df=pd.DataFrame()
        print ("db ...")
    #reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
    #total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
    total_reviews=reviews.count()[0]
    return reviews, total_reviews

#def get_latest_reviews2(db: sqlite3.Connection):
#    reviews2 = db.execute("SELECT * FROM reviews2 ORDER BY id DESC limit 100").fetchall()
#    total_reviews2 = db.execute("Select COUNT(id) from reviews2").fetchone()[0]
#    reviews2 = pd.DataFrame(reviews2, columns=["id","title", "link","channel", "description", "views", "uploaded", "duration", "durationString"])
#    return reviews2, total_reviews2
    
def ccogsphere(name: str, rate: int, celsci: str):
    #db = sqlite3.connect(DB_FILE)
    #cursor = db.cursor()
      
    #try:
    celsci2=celsci.split()
    print("split",celsci2,celsci)
    celsci2=celsci2[0] + "+" + celsci2[1]
    celsci2=ecf(celsci2)
    df=pd.DataFrame.from_dict(celsci2["videos"])
    celsci2=json.dumps(celsci2["videos"])
    for index, row in df.iterrows():
        view = str(row["views"])
        duration = str(row["duration"])
        print(view, duration)
        #celsci=celsci+celsci2
        cursor.execute("INSERT INTO reviews(name, view, duration) VALUES(?,?,?)", [celsci+" Video #"+str(index+1), view, duration])
        #db.commit()
    reviews=df
    total_reviews=reviews.count()[0]
    #reviews, total_reviews = get_latest_reviews(db)
    #db.close()
    r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [celsci + " ", celsci2]}) 

    return reviews, total_reviews

def run_actr():
    from python_actr import log_everything

    #code1="tim = MyAgent()"
    #code2="subway=MyEnv()"
    #code3="subway.agent=tim"
    #code4="log_everything(subway)"]
    from dcogsphere import RockPaperScissors
    from dcogsphere import ProceduralPlayer
    #from dcogsphere import logy

    env=RockPaperScissors()
    env.model1=ProceduralPlayer()
    env.model1.choice=env.choice1
    env.model2=ProceduralPlayer()
    env.model2.choice=env.choice2
    env.run()

def run_ecs(inp):
    try:
        result=ecf(inp)
        df=pd.DataFrame.from_dict(result["videos"])
    except: # sqlite3.OperationalError:
        df=pd.DataFrame()
        print ("db ...")
    
    #df=df.drop(df.columns[4], axis=1)

    #db = sqlite3.connect(DB_FILE)
    #cursor = db.cursor()
    #cursor.execute("INSERT INTO reviews2(title, link, thumbnail,channel, description, views, uploaded, duration, durationString) VALUES(?,?,?,?,?,?,?,?,?)", [title, link, thumbnail,channel, description, views, uploaded, duration, durationString])
    #df.to_sql('reviews2', db, if_exists='replace', index=False)

    #db.commit()
    #reviews2, total_reviews2 = get_latest_reviews(db)
    #db.close()
    #print ("print000", total_reviews2,reviews2)
    reviews2=df
    total_reviews2=reviews2.count()[0]

    return reviews2, total_reviews2
    
    
#def load_data():
#    #db = sqlite3.connect(DB_FILE)
#    reviews, total_reviews = get_latest_reviews()
#    #db.close()
#    return reviews, total_reviews
#def load_data2():
#    db = sqlite3.connect(DB_FILE)
#    reviews2, total_reviews2 = get_latest_reviews2(db)
#    db.close()
#    return reviews2, total_reviews2
    
css="footer {visibility: hidden}"
# Applying style to highlight the maximum value in each row
#styler = df.style.highlight_max(color = 'lightgreen', axis = 0)
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            data = gr.Dataframe() #styler)
            count = gr.Number(label="Rates!")
    with gr.Row():
        with gr.Column():
            name = gr.Textbox(label="a") #, placeholder="What is your name?")
            rate =  gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
            celsci = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?")
            #run_actr()
            submit = gr.Button(value=".")            
            submit.click(ccogsphere, [name, rate, celsci], [data, count])
            demo.load(get_latest_reviews, celsci, [data, count])
            #@name.change(inputs=name, outputs=celsci,_js="window.location.reload()")
            #@rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
            #@celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()") 
            
            #def secwork(celsci):
                #if name=="abc":
                #run_code()
                #demo.load(get_latest_reviews, celsci, [data, count])
                #return "Hello " + name + "!"
demo.launch()