Spaces:
Runtime error
Runtime error
File size: 3,915 Bytes
4fe8a03 f3f2130 4fe8a03 8a19b19 4fe8a03 ca03cf1 4fe8a03 03e689c 4fe8a03 afa150b 4fe8a03 54725b9 4fe8a03 e74f020 4fe8a03 e74f020 4fe8a03 a297e9a 5072ba2 5d0fa3e b7956c7 344e7b1 b7956c7 8cafaa1 13c256e d375849 13c256e dce0c0d 8828ef5 4fe8a03 a13cfab 4fe8a03 f99f85f 4fe8a03 022a19a 889a394 022a19a bd6f558 4eba62e 889a394 bd6f558 889a394 0d6dac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
import math
import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
DB_FILE = "./reviews.db"
TOKEN = os.environ.get('HF_KEY')
repo = huggingface_hub.Repository(
local_dir="data",
repo_type="dataset",
clone_from="CognitiveScience/csdhdata",
use_auth_token=TOKEN
)
repo.git_pull()
# Set db to latest
shutil.copyfile("./data/reviews.db", DB_FILE)
# Create table if it doesn't already exist
db = sqlite3.connect(DB_FILE)
try:
db.execute("SELECT * FROM reviews").fetchall()
db.close()
except sqlite3.OperationalError:
db.execute(
'''
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
name TEXT, review INTEGER, comments TEXT)
''')
db.commit()
db.close()
def get_latest_reviews(db: sqlite3.Connection):
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "review", "comments"])
return reviews, total_reviews
def ccogsphere(name: str, review: int, comments: str):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("INSERT INTO reviews(name, review, comments) VALUES(?,?,?)", [name, review, comments])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
#demo.load()
return reviews, total_reviews
def load_data():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
css="footer {visibility: hidden}"
with gr.Blocks(css=css,api_name=["/ccogsphere"]) as demo:
with gr.Row():
with gr.Column():
#with gr.Box():
#gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)")
data = gr.Dataframe()
count = gr.Number(label="Rates!")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="a") #, placeholder="What is your name?")
review = gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
comments = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?")
submit = gr.Button(value=".")
submit.click(ccogsphere, [name, review, comments], [data, count])
demo.load(load_data, None, [data, count])
@name.change(inputs=name, outputs=comments,_js="window.location.reload()")
def secwork(name):
#if name=="abc":
load_data()
#return "Hello " + name + "!"
def backup_db():
shutil.copyfile(DB_FILE, "./reviews.db")
db = sqlite3.connect(DB_FILE)
reviews = db.execute("SELECT * FROM reviews").fetchall()
pd.DataFrame(reviews).to_csv("./reviews1.csv", index=False)
print("updating db")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
def load_data2():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
#db.close()
return reviews, total_reviews
scheduler = BackgroundScheduler()
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
scheduler.start()
scheduler2 = BackgroundScheduler()
scheduler2.add_job(func=load_data2, trigger="interval", seconds=10)
scheduler2.start()
demo.launch() |