File size: 5,971 Bytes
4fe8a03
 
 
 
 
 
f3f2130
4fe8a03
 
 
 
 
 
 
 
 
 
e4b743f
78ed805
da68b17
 
e9a8ede
 
 
 
fb6ebd2
 
e9a8ede
4fe8a03
45676cc
4fe8a03
 
 
 
 
808babf
ab427b2
4fe8a03
 
 
 
6fd306e
58d82ec
 
c652a61
e9a8ede
4fe8a03
e9a8ede
4fe8a03
 
 
 
 
 
 
 
 
 
 
 
b72bc42
4fe8a03
 
 
 
 
03e689c
4fe8a03
b934676
4fe8a03
 
 
b72bc42
4fe8a03
 
b934676
4fe8a03
 
 
77001b5
54725b9
4fe8a03
 
07170ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039819f
07170ba
4fe8a03
 
 
 
 
d2281a3
e74f020
ea94c7e
c1b0716
36e8381
4fe8a03
a297e9a
c1b0716
b7956c7
344e7b1
b7956c7
8cafaa1
6b5276f
 
89f00b4
8cafaa1
774449d
13c256e
fdebc5f
 
7ef424f
 
 
 
 
 
 
4fe8a03
6800b50
4fe8a03
 
8a910cd
4fe8a03
 
e9a8ede
 
6800b50
e9a8ede
 
6800b50
e9a8ede
6800b50
0759b36
e5a7845
 
0136bd4
8d3471b
2e45868
770c900
954e78c
 
039819f
 
 
 
 
 
022a19a
7ef424f
ea94c7e
7ef424f
4eba62e
4024d85
14982f9
4024d85
 
e9a8ede
14982f9
e9a8ede
 
0d6dac3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
import math

import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler

import random
import time
import requests

from huggingface_hub import hf_hub_download

#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")

from huggingface_hub import login
from datasets import load_dataset

#dataset = load_dataset("csv", data_files="./data.csv")


DB_FILE = "./reviews.db"

TOKEN = os.environ.get('HF_KEY')

repo = huggingface_hub.Repository(
    local_dir="data",
    repo_type="dataset",
    clone_from="CognitiveScience/csdhdata",
    use_auth_token=TOKEN
)
repo.git_pull()

#TOKEN2 = HF_TOKEN


#login(token=TOKEN2)

# Set db to latest
#shutil.copyfile("./data/reviews01.db", DB_FILE)

# Create table if it doesn't already exist

db = sqlite3.connect(DB_FILE)
try:
    db.execute("SELECT * FROM reviews").fetchall()
    db.close()
except sqlite3.OperationalError:
    db.execute(
        '''
        CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
                              created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
                              name TEXT, rate INTEGER, celsci TEXT)
        ''')
    db.commit()
    db.close()

def get_latest_reviews(db: sqlite3.Connection):
    reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
    total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
    reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "rate", "celsci"])
    return reviews, total_reviews


def ccogsphere(name: str, rate: int, celsci: str):
    db = sqlite3.connect(DB_FILE)
    cursor = db.cursor()
    cursor.execute("INSERT INTO reviews(name, rate, celsci) VALUES(?,?,?)", [name, rate, celsci])
    db.commit()
    reviews, total_reviews = get_latest_reviews(db)
    db.close()
    r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [name,celsci]})
    #demo.load()
    return reviews, total_reviews

def run_actr():
    from python_actr import log_everything

    #code1="tim = MyAgent()"
    #code2="subway=MyEnv()"
    #code3="subway.agent=tim"
    #code4="log_everything(subway)"]
    from dcogsphere import RockPaperScissors
    from dcogsphere import ProceduralPlayer
    #from dcogsphere import logy

    env=RockPaperScissors()
    env.model1=ProceduralPlayer()
    env.model1.choice=env.choice1
    env.model2=ProceduralPlayer()
    env.model2.choice=env.choice2
    env.run()

    
def load_data():
    db = sqlite3.connect(DB_FILE)
    reviews, total_reviews = get_latest_reviews(db)
    db.close()
    return reviews, total_reviews
    
css="footer {visibility: hidden}"
# Applying style to highlight the maximum value in each row
#styler = df.style.highlight_max(color = 'lightgreen', axis = 0)
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            data = gr.Dataframe() #styler)
            count = gr.Number(label="Rates!")
    with gr.Row():
        with gr.Column():
            name = gr.Textbox(label="a") #, placeholder="What is your name?")
            rate =  gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
            celsci = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?")
            #run_actr()
            submit = gr.Button(value=".")
            submit.click(ccogsphere, [name, rate, celsci], [data, count])
            demo.load(load_data, None, [data, count])
            @name.change(inputs=name, outputs=celsci,_js="window.location.reload()")
            @rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
            @celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")  
            
            def secwork(name):
                #if name=="abc":
                #run_code()
                load_data()
                #return "Hello " + name + "!"
def backup_db():
    shutil.copyfile(DB_FILE, "./reviews1.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviews.csv", index=False)
    print("updating db")
    repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
    
def backup_db_csv():
    shutil.copyfile(DB_FILE, "./reviews2.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviews2.csv", index=False)
    print("updating db csv")
    dataset = load_dataset("csv", data_files="./reviews2.csv")
    repo.push_to_hub("CognitiveScience/csdhdata", blocking=False) #, commit_message=f"Updating data-csv at {datetime.datetime.now()}")
    #path1=hf_hub_url()
    #print (path1)
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.csv")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.db")
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.md")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.md")


#def load_data2():
#    db = sqlite3.connect(DB_FILE)
#    reviews, total_reviews = get_latest_reviews(db)
#    #db.close()
#    demo.load(load_data,None, [reviews, total_reviews])
#    #return reviews, total_reviews
    
scheduler2 = BackgroundScheduler()
scheduler2.add_job(func=run_actr, trigger="interval", seconds=36)
scheduler2.start()

scheduler2 = BackgroundScheduler()
scheduler2.add_job(func=backup_db, trigger="interval", seconds=3633000)
scheduler2.start()

scheduler3 = BackgroundScheduler()
scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=3666000)
scheduler3.start()

demo.launch()