File size: 8,082 Bytes
4fe8a03
 
 
 
 
7cffecf
 
 
4fe8a03
7cffecf
f3f2130
2b49fc4
 
7cffecf
2b49fc4
4fe8a03
 
 
 
 
 
7cffecf
78ed805
2b49fc4
da68b17
e9a8ede
 
2b49fc4
2274ab7
fb6ebd2
 
e9a8ede
4fe8a03
2b49fc4
4fe8a03
210c1d1
4fe8a03
2b49fc4
 
 
 
 
 
 
4fe8a03
6fd306e
58d82ec
 
c652a61
e9a8ede
4fe8a03
5fc085f
4fe8a03
 
 
2b49fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe8a03
 
2b49fc4
 
 
 
 
7cffecf
b72bc42
2b49fc4
 
7cffecf
bd32352
 
 
 
 
 
 
 
 
 
 
 
2b49fc4
 
 
 
 
bd32352
 
4fe8a03
 
07170ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039819f
7cffecf
 
 
 
2b49fc4
 
7cffecf
2b49fc4
7cffecf
2b49fc4
7cffecf
 
2b49fc4
7cffecf
 
2b49fc4
 
7cffecf
 
 
07170ba
2b49fc4
 
 
 
 
 
 
 
 
 
d2281a3
e74f020
ea94c7e
c1b0716
c854dc6
4fe8a03
a297e9a
c1b0716
c3c3423
344e7b1
b7956c7
1a87147
 
 
89f00b4
1a87147
774449d
2b49fc4
 
 
 
7ef424f
2b49fc4
7ef424f
 
2b49fc4
7ef424f
2b49fc4
387120b
2b49fc4
 
 
 
 
 
 
387120b
2b49fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b005c6
 
 
2b49fc4
 
387120b
2b49fc4
 
 
387120b
2b49fc4
 
 
387120b
2b49fc4
 
f8536a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
from ecogsphere import ecf

import pandas as pd 
import math
import json

import sqlite3
import huggingface_hub
#import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler

import random
import time
#import requests

from huggingface_hub import hf_hub_download

#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")

from huggingface_hub import login
from datasets import load_dataset

#dataset = load_dataset("csv", data_files="./data.csv")


DB_FILE = "./reviewsitr.db"

TOKEN = os.environ.get('HF_KEYY')

repo = huggingface_hub.Repository(
    local_dir="data",
    repo_type="dataset",
    clone_from="CognitiveScience/csdhdata",
    use_auth_token=TOKEN
)
repo.git_pull()

#TOKEN2 = HF_TOKEN


#login(token=TOKEN2)

# Set db to latest
#shutil.copyfile("./reviews2.db", DB_FILE)

# Create table if it doesn't already exist

db = sqlite3.connect(DB_FILE)
try:
    db.execute("SELECT * FROM reviews").fetchall()
    #db.execute("SELECT * FROM reviews2").fetchall()

    db.close()
except sqlite3.OperationalError:
    db.execute(
        '''
        CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
                              created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
                              name TEXT, view TEXT, duration TEXT)
        ''')
    db.commit()
    db.close()

    db = sqlite3.connect(DB_FILE)

def get_latest_reviews(db: sqlite3.Connection):
    reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
    total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
    reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "view", "duration"])
    return reviews, total_reviews

def get_latest_reviews2(db: sqlite3.Connection):
    reviews2 = db.execute("SELECT * FROM reviews2 ORDER BY id DESC limit 100").fetchall()
    total_reviews2 = db.execute("Select COUNT(id) from reviews2").fetchone()[0]
    reviews2 = pd.DataFrame(reviews2, columns=["id","title", "link","channel", "description", "views", "uploaded", "duration", "durationString"])
    return reviews2, total_reviews2
    
def ccogsphere(name: str, rate: int, celsci: str):
    db = sqlite3.connect(DB_FILE)
    cursor = db.cursor()
      
    #try:
    celsci2=celsci.split()
    print("split",celsci2,celsci)
    celsci2=celsci2[0] + "+" + celsci2[1]
    celsci2=ecf(celsci2)
    df=pd.DataFrame.from_dict(celsci2["videos"])
    celsci2=json.dumps(celsci2["videos"])
    for index, row in df.iterrows():
        view = str(row["views"])
        duration = str(row["duration"])
        print(view, duration)
        #celsci=celsci+celsci2
        cursor.execute("INSERT INTO reviews(name, view, duration) VALUES(?,?,?)", [celsci+str(index+1), view, duration])
        db.commit()
    
    reviews, total_reviews = get_latest_reviews(db)
    db.close()
    r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [celsci + " ", celsci2]}) 

    return reviews, total_reviews

def run_actr():
    from python_actr import log_everything

    #code1="tim = MyAgent()"
    #code2="subway=MyEnv()"
    #code3="subway.agent=tim"
    #code4="log_everything(subway)"]
    from dcogsphere import RockPaperScissors
    from dcogsphere import ProceduralPlayer
    #from dcogsphere import logy

    env=RockPaperScissors()
    env.model1=ProceduralPlayer()
    env.model1.choice=env.choice1
    env.model2=ProceduralPlayer()
    env.model2.choice=env.choice2
    env.run()

def run_ecs(inp):
    try:
        result=ecf(inp)
        df=pd.DataFrame.from_dict(result["videos"])
    except sqlite3.OperationalError:
        print ("db error")
    
    df=df.drop(df.columns[4], axis=1)

    db = sqlite3.connect(DB_FILE)
    #cursor = db.cursor()
    #cursor.execute("INSERT INTO reviews2(title, link, thumbnail,channel, description, views, uploaded, duration, durationString) VALUES(?,?,?,?,?,?,?,?,?)", [title, link, thumbnail,channel, description, views, uploaded, duration, durationString])
    df.to_sql('reviews2', db, if_exists='replace', index=False)

    #db.commit()
    reviews2, total_reviews2 = get_latest_reviews(db)
    db.close()
    #print ("print000", total_reviews2,reviews2)
    return reviews2, total_reviews2
    
    
def load_data():
    db = sqlite3.connect(DB_FILE)
    reviews, total_reviews = get_latest_reviews(db)
    db.close()
    return reviews, total_reviews
def load_data2():
    db = sqlite3.connect(DB_FILE)
    reviews2, total_reviews2 = get_latest_reviews2(db)
    db.close()
    return reviews2, total_reviews2
    
css="footer {visibility: hidden}"
# Applying style to highlight the maximum value in each row
#styler = df.style.highlight_max(color = 'lightgreen', axis = 0)
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            data = gr.Dataframe() #styler)
            count = gr.Number(label="Rates!", visible=False)
    with gr.Row():
        with gr.Column():
            name = gr.Textbox(label="a", visible=False) #, placeholder="What is your name?")
            rate =  gr.Textbox(label="b", visible=False) #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
            celsci = gr.Textbox(label="c", visible=False) #, lines=10, placeholder="Do you have any feedback on gradio?")
            #run_actr()
            submit = gr.Button(value=".", visible=False)            
            submit.click(ccogsphere, [name, rate, celsci], [data, count])
            demo.load(load_data, None, [data, count])
            @name.change(inputs=name, outputs=celsci,_js="window.location.reload()")
            @rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
            @celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")  
            
            def secwork(name):
                #if name=="abc":
                #run_code()
                load_data()
                #return "Hello " + name + "!"
def backup_db():
    shutil.copyfile(DB_FILE, "./reviews01.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviews.csv", index=False)
    print("updating db")
    repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
    
def backup_db_csv():
    shutil.copyfile(DB_FILE, "./reviews02.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviews2.csv", index=False)
    print("updating db csv")
    dataset = load_dataset("csv", data_files="./reviews2.csv")
    repo.push_to_hub("CognitiveScience/csdhdata", blocking=False) #, commit_message=f"Updating data-csv at {datetime.datetime.now()}")
    #path1=hf_hub_url()
    #print (path1)
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.csv")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.db")
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.md")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.md")


#def load_data2():
#    db = sqlite3.connect(DB_FILE)
#    reviews, total_reviews = get_latest_reviews(db)
#    #db.close()
#    demo.load(load_data,None, [reviews, total_reviews])
#    #return reviews, total_reviews
    
scheduler1 = BackgroundScheduler()
scheduler1.add_job(func=run_actr, trigger="interval", seconds=6)
scheduler1.start()
    
scheduler1 = BackgroundScheduler()
scheduler1.add_job(func=load_data, trigger="interval", seconds=9)
scheduler1.start()

scheduler2 = BackgroundScheduler()
scheduler2.add_job(func=backup_db, trigger="interval", seconds=13)
scheduler2.start()

scheduler3 = BackgroundScheduler()
scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=16)
scheduler3.start()

demo.launch()