File size: 7,795 Bytes
fed7f36
 
 
 
 
 
ab445b8
fed7f36
 
 
 
 
 
 
 
 
 
ab445b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed7f36
 
 
 
 
 
 
 
 
 
 
3fc678c
 
 
 
 
fed7f36
de28386
 
 
fed7f36
 
ab445b8
fed7f36
 
 
 
ab445b8
 
 
 
 
 
fed7f36
 
de28386
 
fed7f36
 
 
 
 
 
 
de28386
 
fed7f36
 
 
 
ab445b8
de28386
 
ab445b8
 
fed7f36
 
 
 
 
 
ab445b8
 
fed7f36
 
 
 
 
 
 
 
 
ab445b8
 
 
 
fed7f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab445b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed7f36
121620a
fed7f36
ab445b8
3fc678c
121620a
 
3fc678c
121620a
3fc678c
121620a
 
 
ab445b8
fed7f36
ab445b8
 
fed7f36
 
 
ab445b8
 
121620a
fed7f36
121620a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from __future__ import annotations

import pathlib
import pickle
import sys

import lpips
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

current_dir = pathlib.Path(__file__).parent
submodule_dir = current_dir / 'stylegan3'
sys.path.insert(0, submodule_dir.as_posix())


class LPIPS(lpips.LPIPS):
    @staticmethod
    def preprocess(image: np.ndarray) -> torch.Tensor:
        data = torch.from_numpy(image).float() / 255
        data = data * 2 - 1
        return data.permute(2, 0, 1).unsqueeze(0)

    @torch.inference_mode()
    def compute_features(self, data: torch.Tensor) -> list[torch.Tensor]:
        data = self.scaling_layer(data)
        data = self.net(data)
        return [lpips.normalize_tensor(x) for x in data]

    @torch.inference_mode()
    def compute_distance(self, features0: list[torch.Tensor],
                         features1: list[torch.Tensor]) -> float:
        res = 0
        for lin, x0, x1 in zip(self.lins, features0, features1):
            d = (x0 - x1)**2
            y = lin(d)
            y = lpips.lpips.spatial_average(y)
            res += y.item()
        return res


class Model:

    MODEL_NAMES = [
        'dogs_1024',
        'elephants_512',
        'horses_256',
        'bicycles_256',
        'lions_512',
        'giraffes_512',
        'parrots_512',
    ]
    TRUNCATION_TYPES = [
        'Multimodal (LPIPS)',
        'Multimodal (L2)',
        'Global',
    ]

    def __init__(self):
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self._download_all_models()
        self._download_all_cluster_centers()
        self._download_all_cluster_center_images()

        self.model_name = self.MODEL_NAMES[0]
        self.model = self._load_model(self.model_name)
        self.cluster_centers = self._load_cluster_centers(self.model_name)
        self.cluster_center_images = self._load_cluster_center_images(
            self.model_name)

        self.lpips = LPIPS()
        self.cluster_center_lpips_feature_dict = self._compute_cluster_center_lpips_features(
        )

    def _load_model(self, model_name: str) -> nn.Module:
        path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
                               f'models/{model_name}_pytorch.pkl')
        with open(path, 'rb') as f:
            model = pickle.load(f)['G_ema']
        model.eval()
        model.to(self.device)
        return model

    def _load_cluster_centers(self, model_name: str) -> torch.Tensor:
        path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
                               f'cluster_centers/{model_name}.npy')
        centers = np.load(path)
        centers = torch.from_numpy(centers).float().to(self.device)
        return centers

    def _load_cluster_center_images(self, model_name: str) -> np.ndarray:
        path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
                               f'cluster_center_images/{model_name}.npy')
        return np.load(path)

    def set_model(self, model_name: str) -> None:
        if model_name == self.model_name:
            return
        self.model_name = model_name
        self.model = self._load_model(model_name)
        self.cluster_centers = self._load_cluster_centers(model_name)
        self.cluster_center_images = self._load_cluster_center_images(
            model_name)

    def _download_all_models(self):
        for name in self.MODEL_NAMES:
            self._load_model(name)

    def _download_all_cluster_centers(self):
        for name in self.MODEL_NAMES:
            self._load_cluster_centers(name)

    def _download_all_cluster_center_images(self):
        for name in self.MODEL_NAMES:
            self._load_cluster_center_images(name)

    def generate_z(self, seed: int) -> torch.Tensor:
        seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
        return torch.from_numpy(
            np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to(
                self.device)

    def compute_w(self, z: torch.Tensor) -> torch.Tensor:
        label = torch.zeros((1, self.model.c_dim), device=self.device)
        w = self.model.mapping(z, label)
        return w

    @staticmethod
    def truncate_w(w_center: torch.Tensor, w: torch.Tensor,
                   psi: float) -> torch.Tensor:
        if psi == 1:
            return w
        return w_center.lerp(w, psi)

    @torch.inference_mode()
    def synthesize(self, w: torch.Tensor) -> torch.Tensor:
        return self.model.synthesis(w)

    def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
        tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
            torch.uint8)
        return tensor.cpu().numpy()

    def compute_lpips_features(self, image: np.ndarray) -> list[torch.Tensor]:
        data = self.lpips.preprocess(image)
        return self.lpips.compute_features(data)

    def _compute_cluster_center_lpips_features(
            self) -> dict[str, list[list[torch.Tensor]]]:
        res = dict()
        for name in self.MODEL_NAMES:
            images = self._load_cluster_center_images(name)
            res[name] = [
                self.compute_lpips_features(image) for image in images
            ]
        return res

    def compute_distance_to_cluster_centers(
            self, ws: torch.Tensor, distance_type: str) -> list[torch.Tensor]:
        if distance_type == 'l2':
            return self._compute_l2_distance_to_cluster_centers(ws)
        elif distance_type == 'lpips':
            return self._compute_lpips_distance_to_cluster_centers(ws)
        else:
            raise ValueError

    def _compute_l2_distance_to_cluster_centers(
            self, ws: torch.Tensor) -> np.ndarray:
        dist2 = ((self.cluster_centers - ws[0, 0])**2).sum(dim=1)
        return dist2.cpu().numpy()

    def _compute_lpips_distance_to_cluster_centers(
            self, ws: torch.Tensor) -> np.ndarray:
        x = self.synthesize(ws)
        x = self.postprocess(x)[0]
        feat0 = self.compute_lpips_features(x)
        cluster_center_features = self.cluster_center_lpips_feature_dict[
            self.model_name]
        distances = [
            self.lpips.compute_distance(feat0, feat1)
            for feat1 in cluster_center_features
        ]
        return np.asarray(distances)

    def find_nearest_cluster_center(self, ws: torch.Tensor,
                                    distance_type: str) -> int:
        distances = self.compute_distance_to_cluster_centers(ws, distance_type)
        return int(np.argmin(distances))

    def generate_image(self, seed: int, truncation_psi: float,
                       truncation_type: str) -> np.ndarray:
        z = self.generate_z(seed)
        ws = self.compute_w(z)
        if truncation_type == self.TRUNCATION_TYPES[2]:
            w0 = self.model.mapping.w_avg
        else:
            if truncation_type == self.TRUNCATION_TYPES[0]:
                distance_type = 'lpips'
            elif truncation_type == self.TRUNCATION_TYPES[1]:
                distance_type = 'l2'
            else:
                raise ValueError
            cluster_index = self.find_nearest_cluster_center(ws, distance_type)
            w0 = self.cluster_centers[cluster_index]
        new_ws = self.truncate_w(w0, ws, truncation_psi)
        out = self.synthesize(new_ws)
        out = self.postprocess(out)
        return out[0]

    def set_model_and_generate_image(self, model_name: str, seed: int,
                                     truncation_psi: float,
                                     truncation_type: str) -> np.ndarray:
        self.set_model(model_name)
        return self.generate_image(seed, truncation_psi, truncation_type)