File size: 4,506 Bytes
45bcca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

sys.path.insert(0, 'stylegan3')

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

ORIGINAL_REPO_URL = 'https://github.com/self-distilled-stylegan/self-distilled-internet-photos'
TITLE = 'Self-Distilled StyleGAN'
DESCRIPTION = f'This is a demo for models provided in {ORIGINAL_REPO_URL}.'
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### Dogs
- size: 1024x1024
- seed: 0-99
![Dogs]({SAMPLE_IMAGE_DIR}/dogs.jpg)
### Elephants
- size: 512x512
- seed: 0-99
![Elephants]({SAMPLE_IMAGE_DIR}/elephants.jpg)
### Horses
- size: 256x256
- seed: 0-99
![Horses]({SAMPLE_IMAGE_DIR}/horses.jpg)
### Bicycles
- size: 256x256
- seed: 0-99
![Bicycles]({SAMPLE_IMAGE_DIR}/bicycles.jpg)
### Lions
- size: 512x512
- seed: 0-99
![Lions]({SAMPLE_IMAGE_DIR}/lions.jpg)
### Giraffes
- size: 512x512
- seed: 0-99
![Giraffes]({SAMPLE_IMAGE_DIR}/giraffes.jpg)
### Parrots
- size: 512x512
- seed: 0-99
![Parrots]({SAMPLE_IMAGE_DIR}/parrots.jpg)
'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
                   model_dict: dict[str, nn.Module],
                   device: torch.device) -> np.ndarray:
    model = model_dict[model_name]
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.z_dim, seed, device)
    label = torch.zeros([1, model.c_dim], device=device)

    out = model(z, label, truncation_psi=truncation_psi)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def load_model(model_name: str, device: torch.device) -> nn.Module:
    path = hf_hub_download('hysts/Self-Distilled-StyleGAN',
                           f'models/{model_name}_pytorch.pkl',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = pickle.load(f)['G_ema']
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label)
    return model


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    model_names = [
        'dogs_1024',
        'elephants_512',
        'horses_256',
        'bicycles_256',
        'lions_512',
        'giraffes_512',
        'parrots_512',
    ]

    model_dict = {name: load_model(name, device) for name in model_names}

    func = functools.partial(generate_image,
                             model_dict=model_dict,
                             device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.Radio(
                model_names, type='value', default='dogs_1024', label='Model'),
            gr.inputs.Number(default=0, label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()