Spaces:
Runtime error
Runtime error
File size: 3,546 Bytes
4f77518 3974b7a 4f77518 3974b7a d23fc4b 3974b7a f37371f 3974b7a d23fc4b 3974b7a 4f77518 125b498 4f77518 2f309cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import spaces
import torch
from safetensors import safe_open
from jaxtyping import Float, Int
from typing import List, Callable
from torch import Tensor
from threading import Thread
import einops
model_id = "MaziyarPanahi/Meta-Llama-3-70B-Instruct-GPTQ"
tokenizer = AutoTokenizer.from_pretrained(model_id)
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device="cuda:0",
use_safetensors=True,
disable_exllamav2=True,
use_marlin=True,
quantize_config=quantize_config).eval()
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device=torch.device("cuda"))
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
thread = Thread(
target=model.generate,
kwargs={
"inputs": inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"streamer": streamer,
},
)
thread.start()
for new_text in streamer:
token = new_text.choices[0].delta.content
response += token
yield response
def get_orthogonalized_matrix(matrix: Float[Tensor, '... d_model'], vec: Float[Tensor, 'd_model']) -> Float[Tensor, '... d_model']:
device = matrix.device
vec = vec.to(device)
proj = einops.einsum(matrix, vec.view(-1, 1), '... d_model, d_model single -> ... single') * vec
return matrix - proj
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
# get refusal_dir from refusal_dir.safetensors file.
with safe_open("refusal_dir.safetensors", framework="pt", device="cpu") as f:
refusal_dir = f.get_tensor("refusal_dir")
refusal_dir = refusal_dir.cpu().float()
model.model.embed_tokens.weight.data = get_orthogonalized_matrix(model.model.embed_tokens.weight, refusal_dir)
for block in model.model.layers:
block.self_attn.o_proj.weight.data = get_orthogonalized_matrix(block.self_attn.o_proj.weight, refusal_dir)
block.mlp.down_proj.weight.data = get_orthogonalized_matrix(block.mlp.down_proj.weight.T, refusal_dir).T
demo.launch() |