Spaces:
Sleeping
Sleeping
File size: 6,382 Bytes
d67f3b0 99b509d d67f3b0 d529d6e 93e2807 d529d6e d67f3b0 979bf04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import tempfile
import uuid
import zipfile
import io
from gtts import gTTS
from langchain_community.llms import OpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain.llms.base import LLM
from typing import Any, List, Mapping, Optional
from openai import OpenAI as OpenAIClient
import gradio as gr
class LlamaLLM(LLM):
client: Any = None
def __init__(self, api_key: str):
super().__init__()
self.client = OpenAIClient(
base_url="https://integrate.api.nvidia.com/v1",
api_key=api_key
)
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
completion = self.client.chat.completions.create(
model="meta/llama-3.3-70b-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
top_p=0.7,
max_tokens=1024,
)
return completion.choices[0].message.content
@property
def _llm_type(self) -> str:
return "Llama 3.3"
def process_pdfs(zip_file, api_key):
"""Process uploaded ZIP file containing PDFs"""
print("Processing ZIP file...")
with tempfile.TemporaryDirectory() as temp_dir:
print(f"Extracting ZIP to temporary directory: {temp_dir}")
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
print("Loading PDFs...")
loader = DirectoryLoader(temp_dir, glob="**/*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
if not documents:
raise ValueError("No PDF files found in the uploaded ZIP")
print(f"Loaded {len(documents)} documents.")
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
print("Creating embeddings...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = FAISS.from_documents(texts, embeddings)
memory = ConversationBufferMemory()
llm = LlamaLLM(api_key=api_key)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory=memory,
)
print("PDF processing complete.")
return qa_chain, memory
def generate_audio(text: str) -> str:
"""Generate audio from text using gTTS"""
try:
tts = gTTS(text=text, lang='en')
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_file.name)
return temp_file.name
except Exception as e:
print(f"Audio generation error: {e}")
return None
def chat_response(query, qa_chain, memory):
print(f"Generating response for query: {query}")
try:
raw_response = qa_chain.invoke(query)
print(f"Raw response: {raw_response}")
royal_prompt = f"""
Respond as a historical royal figure mentioned in the query.
Use first-person perspective and be gender-specific.
Respond in the query's language. Be authoritative but polite.
Use only context information. If unsure, respond as a monarch would.
Context: {raw_response}
Previous conversation: {memory.buffer}
Query: {query}
Royal Response:"""
# Access the LLM through the correct path in the chain
final_response = qa_chain.combine_documents_chain.llm_chain.llm._call(royal_prompt)
print(f"Final response: {final_response}")
memory.save_context({'input': query}, {'output': final_response})
return final_response, generate_audio(final_response)
except Exception as e:
print(f"Error in chat_response: {e}")
raise gr.Error(f"Error generating response: {e}")
with gr.Blocks() as demo:
gr.Markdown("""
# π Royal Document Assistant
<small>This agent can help you with any historical material in a fun and engaging experience, including text and voice responses. But first, visit NVIDIA LLaMA 3.3 70B and get your API key..</small>
""")
qa_chain = gr.State()
memory = gr.State()
with gr.Row():
with gr.Column():
api_key_input = gr.Textbox(label="Enter your NVIDIA API Key", type="password")
zip_upload = gr.File(label="Upload ZIP of PDFs", type="filepath")
load_btn = gr.Button("Process Documents")
load_status = gr.Markdown()
with gr.Row(visible=False) as chat_row:
with gr.Column():
chat_input = gr.Textbox(label="Ask the Royal Assistant")
chat_output = gr.Textbox(label="Response", interactive=False)
audio_output = gr.Audio(label="Spoken Response", type="filepath")
submit_btn = gr.Button("Ask")
def load_docs(zip_file, api_key):
try:
chain, mem = process_pdfs(zip_file, api_key)
return (
gr.update(visible=True),
chain,
mem,
"β
Documents processed! You may now ask questions"
)
except Exception as e:
return (
gr.update(visible=False),
None,
None,
f"β Error processing documents: {str(e)}"
)
def ask_question(query, qa_chain, memory):
if not qa_chain or not memory:
raise gr.Error("Please process documents first!")
try:
response, audio = chat_response(query, qa_chain, memory)
return response, audio
except Exception as e:
print(f"Error in ask_question: {e}")
return f"Error: {str(e)}", None
load_btn.click(
load_docs,
inputs=[zip_upload, api_key_input],
outputs=[chat_row, qa_chain, memory, load_status]
)
submit_btn.click(
ask_question,
inputs=[chat_input, qa_chain, memory],
outputs=[chat_output, audio_output]
)
if __name__ == "__main__":
demo.launch(share=True) |