Spaces:
Sleeping
Sleeping
File size: 12,791 Bytes
33cccc8 987c40f 74aaf3b 33cccc8 b406149 33cccc8 b406149 74aaf3b 987c40f 74aaf3b 33cccc8 987c40f 74aaf3b 33cccc8 74aaf3b ec80195 987c40f 33cccc8 74aaf3b 33cccc8 74aaf3b 33cccc8 74aaf3b 987c40f 33cccc8 74aaf3b 33cccc8 ec80195 33cccc8 ec80195 33cccc8 74aaf3b 33cccc8 ec80195 33cccc8 74aaf3b ec80195 33cccc8 b406149 33cccc8 b406149 33cccc8 ec80195 33cccc8 b406149 33cccc8 987c40f ec80195 987c40f ec80195 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# import gradio as gr
# import pandas as pd
# import os
# import io
# import zipfile
# import shutil
# from bs4 import BeautifulSoup
# from typing import List, TypedDict
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_core.documents import Document
# from langchain_core.prompts import PromptTemplate
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.runnables import RunnablePassthrough
# from langchain_nvidia_ai_endpoints import ChatNVIDIA
# from langchain_community.tools.tavily_search import TavilySearchResults
# from langgraph.graph import END, StateGraph, START
# import chromadb
# # ... (Keep all necessary imports from section 1 here)
# def process_documents(folder_path):
# """Process documents from the uploaded folder."""
# d = {"chunk": [], "url": []}
# for path in os.listdir(folder_path):
# if not path.endswith(".html"): # Skip non-HTML files
# continue
# url = "https://" + path.replace("=", "/")
# file_path = os.path.join(folder_path, path)
# with open(file_path, 'rb') as stream:
# content = stream.read().decode("utf-8")
# soup = BeautifulSoup(content, "html.parser")
# title = soup.find("title")
# title_text = title.string.replace(" | Dataiku", "") if title else "No Title"
# main_content = soup.find("main")
# text_content = main_content.get_text(strip=True) if main_content else soup.get_text(strip=True)
# full_content = f"{title_text}\n\n{text_content}"
# d["chunk"].append(full_content)
# d["url"].append(url)
# return pd.DataFrame(d)
# def setup_rag_system(folder_path):
# """Initialize the RAG system with the provided documents."""
# # ... (Keep your existing setup_rag_system implementation here)
# return vector_store
# def create_workflow(vector_store):
# """Create the RAG workflow."""
# # ... (Keep your existing workflow creation code here)
# return workflow.compile()
# def handle_upload(folder_files, csv_file):
# try:
# # Create temporary directory
# temp_dir = "temp_upload"
# os.makedirs(temp_dir, exist_ok=True)
# # Process document files
# doc_dir = os.path.join(temp_dir, "docs")
# os.makedirs(doc_dir, exist_ok=True)
# # Handle zip file or individual files
# for file in folder_files:
# if file.name.endswith('.zip'):
# with zipfile.ZipFile(io.BytesIO(file.read())) as zip_ref:
# zip_ref.extractall(doc_dir)
# else:
# with open(os.path.join(doc_dir, file.name), "wb") as f:
# f.write(file.read())
# # Process CSV requirements
# csv_content = csv_file.read()
# requirements_df = pd.read_csv(io.BytesIO(csv_content), encoding='latin-1')
# requirements = requirements_df.iloc[:, 0].tolist() # Get first column
# # Setup RAG system
# vector_store = setup_rag_system(doc_dir)
# app = create_workflow(vector_store)
# # Process requirements
# results = []
# for question in requirements:
# inputs = {"question": question}
# output = app.invoke(inputs)
# results.append({
# "Requirement": question,
# "Response": output.get("generation", "No response generated")
# })
# # Cleanup
# shutil.rmtree(temp_dir)
# return pd.DataFrame(results)
# except Exception as e:
# return pd.DataFrame({"Error": [str(e)]})
# def create_gradio_interface():
# iface = gr.Interface(
# fn=handle_upload,
# inputs=[
# gr.File(file_count="multiple", label="Upload Documents (ZIP or HTML files)"),
# gr.File(label="Upload Requirements CSV", type="binary")
# ],
# outputs=gr.Dataframe(),
# title="RAG System for RFP Analysis",
# description="Upload documents (ZIP or HTML files) and a CSV file with requirements."
# )
# return iface
# if __name__ == "__main__":
# iface = create_gradio_interface()
# iface.launch()
import gradio as gr
import pandas as pd
import os
import torch
import zipfile
import tempfile
import shutil
from bs4 import BeautifulSoup
from typing import List, TypedDict
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.graph import END, StateGraph, START
import chromadb
import io
# Environment variables setup
os.environ["TAVILY_API_KEY"] = "YOUR_TAVILY_API_KEY"
os.environ["NVIDIA_API_KEY"] = "YOUR_NVIDIA_API_KEY"
os.environ["LANGCHAIN_PROJECT"] = "RAG project"
class GradeDocuments(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
class GraphState(TypedDict):
"""Represents the state of our graph."""
question: str
generation: str
decision: str
documents: List[str]
def process_documents(temp_dir):
"""Process documents from the extracted zip folder."""
d = {"chunk": [], "url": []}
for path in os.listdir(temp_dir):
if os.path.isfile(os.path.join(temp_dir, path)):
url = "https://" + path.replace("=", "/")
file_path = os.path.join(temp_dir, path)
try:
with open(file_path, 'r', encoding='utf-8') as stream:
content = stream.read()
soup = BeautifulSoup(content, "html.parser")
title = soup.find("title")
title_text = title.string.replace(" | Dataiku", "") if title else "No Title"
main_content = soup.find("main")
text_content = main_content.get_text(strip=True) if main_content else soup.get_text(strip=True)
full_content = f"{title_text}\n\n{text_content}"
d["chunk"].append(full_content)
d["url"].append(url)
except Exception as e:
print(f"Error processing file {path}: {str(e)}")
continue
return pd.DataFrame(d)
def setup_rag_system(temp_dir):
"""Initialize the RAG system with the provided documents."""
# Initialize embedding model
model_name = "dunzhang/stella_en_1.5B_v5"
model_kwargs = {'trust_remote_code': 'True'}
embedding_model = HuggingFaceEmbeddings(
model_name=model_name,
show_progress=True,
model_kwargs=model_kwargs
)
# Process documents
df = process_documents(temp_dir)
if df.empty:
raise ValueError("No valid documents were processed")
df["chunk_id"] = range(len(df))
# Create documents list
list_of_documents = [
Document(
page_content=record['chunk'],
metadata={"source_url": record['url']}
)
for record in df[['chunk', 'url']].to_dict(orient='records')
]
# Setup vector store
ids = [str(i) for i in df['chunk_id'].to_list()]
client = chromadb.PersistentClient(path=tempfile.mkdtemp())
vector_store = Chroma(
client=client,
collection_name="rag-chroma",
embedding_function=embedding_model,
)
# Add documents in batches
batch_size = 100
for i in range(0, len(list_of_documents), batch_size):
end_idx = min(i + batch_size, len(list_of_documents))
vector_store.add_documents(
documents=list_of_documents[i:end_idx],
ids=ids[i:end_idx]
)
return vector_store
def create_workflow(vector_store):
"""Create the RAG workflow."""
retriever = vector_store.as_retriever(search_kwargs={"k": 7})
llm = ChatNVIDIA(model="meta/llama-3.3-70b-instruct", temperature=0)
rag_prompt = PromptTemplate.from_template(
"""You are an assistant for responding to Request For Proposal documents for a
bidder in the field of Data Science and Engineering. Use the following pieces
of retrieved context to respond to the requests. If you don't know the answer,
just say that you don't know. Provide detailed responses with specific examples
and capabilities where possible.
Question: {question}
Context: {context}
Answer:"""
)
def format_docs(result):
return "\n\n".join(doc.page_content for doc in result)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
return rag_chain
def preprocess_csv(csv_file):
"""Preprocess the CSV file to ensure proper format."""
try:
# First try reading as is
df = pd.read_csv(csv_file.name, encoding='latin-1')
# If there's only one column and no header
if len(df.columns) == 1 and df.columns[0] != 'requirement':
# Read again with no header and assign column name
df = pd.read_csv(csv_file.name, encoding='latin-1', header=None, names=['requirement'])
# If there's no 'requirement' column, assume first column is requirements
if 'requirement' not in df.columns:
df = df.rename(columns={df.columns[0]: 'requirement'})
return df
except Exception as e:
# If standard CSV reading fails, try reading as plain text
try:
with open(csv_file.name, 'r', encoding='latin-1') as f:
requirements = f.read().strip().split('\n')
return pd.DataFrame({'requirement': requirements})
except Exception as e2:
raise ValueError(f"Could not process CSV file: {str(e2)}")
def handle_upload(zip_file, csv_file):
"""Handle file uploads and process requirements."""
try:
# Create temporary directory
temp_dir = tempfile.mkdtemp()
try:
# Extract zip file
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
# Preprocess and read requirements CSV
requirements_df = preprocess_csv(csv_file)
# Setup RAG system
vector_store = setup_rag_system(temp_dir)
rag_chain = create_workflow(vector_store)
# Process requirements
results = []
for req in requirements_df['requirement']:
try:
response = rag_chain.invoke(req)
results.append({
'requirement': req,
'response': response
})
except Exception as e:
results.append({
'requirement': req,
'response': f"Error processing requirement: {str(e)}"
})
return pd.DataFrame(results)
finally:
# Cleanup
shutil.rmtree(temp_dir)
except Exception as e:
return pd.DataFrame([{'error': str(e)}])
def main():
"""Main function to run the Gradio interface."""
iface = gr.Interface(
fn=handle_upload,
inputs=[
gr.File(label="Upload ZIP folder containing URLs", file_types=[".zip"]),
gr.File(label="Upload Requirements CSV", file_types=[".csv", ".txt"])
],
outputs=gr.Dataframe(),
title="RAG System for RFP Analysis",
description="""Upload a ZIP folder containing URL documents and a CSV file with requirements to analyze.
The CSV file should contain requirements either as a single column or with a 'requirement' column header.""",
examples=[],
cache_examples=False
)
iface.launch(share=True)
if __name__ == "__main__":
main() |