Spaces:
Sleeping
Sleeping
File size: 12,474 Bytes
94d3bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import base64
import requests
import gradio as gr
import PyPDF2
import google.generativeai as genai
from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer, util
import numpy as np
import os
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.documents import Document
# Retrieve API keys from environment variables
google_api_key = os.getenv("GOOGLE_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
docusign_api_key = os.getenv("DOCUSIGN_API_KEY")
# Configure Google Generative AI
genai.configure(api_key=google_api_key)
# Create the Gemini model
generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 65536,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-2.0-flash-thinking-exp-01-21",
generation_config=generation_config,
)
chat_session = model.start_chat(history=[])
# Function to extract text from a PDF
def extract_text_from_pdf(file_path):
try:
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
text = "".join(page.extract_text() for page in reader.pages)
return text
except Exception as e:
return f"Error extracting text from PDF: {e}"
# Function to chunk the text
def chunk_text(text, chunk_size=500, chunk_overlap=50):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to embed the chunks
def embed_chunks(chunks, model_name="all-MiniLM-L6-v2"):
model = SentenceTransformer(model_name)
embeddings = model.encode(chunks, convert_to_tensor=True)
return embeddings, model
# Function to retrieve relevant chunks
def retrieve_relevant_chunks(query, chunks, embeddings, model, top_k=3):
query_embedding = model.encode(query, convert_to_tensor=True)
similarities = util.cos_sim(query_embedding, embeddings)[0]
top_k = min(top_k, len(chunks))
top_indices = np.argsort(similarities.cpu().numpy())[-top_k:][::-1]
relevant_chunks = [chunks[i] for i in top_indices]
return relevant_chunks
# Function to summarize the agreement using Gemini
def summarize_agreement_with_gemini(text):
try:
# Create a prompt for summarization
prompt = f"Summarize the following text in 3-5 sentences:\n\n{text}\n\nSummary:"
# Send the prompt to the Gemini model
response = chat_session.send_message(prompt)
return response.text
except Exception as e:
return f"Error summarizing text with Gemini: {e}"
# Configure Tavily API
os.environ["TAVILY_API_KEY"] = tavily_api_key
web_search_tool = TavilySearchResults(k=3)
def generate_response_with_rag(query, pdf_path, state):
if "chunks" not in state or "embeddings" not in state or "embedding_model" not in state:
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text)
embeddings, embedding_model = embed_chunks(chunks)
state["chunks"] = chunks
state["embeddings"] = embeddings
state["embedding_model"] = embedding_model
else:
chunks = state["chunks"]
embeddings = state["embeddings"]
embedding_model = state["embedding_model"]
# Retrieve relevant chunks based on the query
relevant_chunks = retrieve_relevant_chunks(query, chunks, embeddings, embedding_model, top_k=5) # Increase top_k
# Debug: Print relevant chunks
print(f"Relevant Chunks: {relevant_chunks}")
# Combine the relevant chunks into a single context
context = "\n\n".join(relevant_chunks)
# Debug: Print the context
print(f"Context from PDF: {context}")
# Create a prompt that instructs the model to answer only from the context
prompt = f"""
You are a helpful assistant that answers questions based on the provided context.
Use the context below to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know."
**Context:**
{context}
**Question:**
{query}
**Answer:**
"""
# Debug: Print the prompt
print(f"Prompt for Gemini: {prompt}")
# Send the prompt to the Gemini model
try:
response = chat_session.send_message(prompt)
initial_answer = response.text
# Check if the initial answer is "I don't know"
if "I don't know" in initial_answer or "i don't know" in initial_answer:
print("Initial answer is 'I don't know'. Performing web search...")
docs = web_search_tool.invoke({"query": query})
web_results = "\n".join([d["content"] for d in docs])
web_results = Document(page_content=web_results)
# Debug: Print web search results
print(f"Web Search Results: {web_results.page_content}")
# Create a prompt that instructs the model to answer from the web search results
web_prompt = f"""
You are a helpful assistant that answers questions based on the provided context.
The context below is from a web search. Use the context to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know."
**Context:**
{web_results.page_content}
**Question:**
{query}
**Answer:**
"""
# Debug: Print the prompt
print(f"Prompt for Gemini (Web Search): {web_prompt}")
# Send the prompt to the Gemini model
web_response = chat_session.send_message(web_prompt)
# Add a note indicating the answer is based on a web search
return f"{web_response.text}\n\n*Note: This answer is based on a web search.*"
else:
return initial_answer
except Exception as e:
return f"Error generating response: {e}"
# Function to send document to DocuSign
def send_to_docusign(file_path, recipient_email, recipient_name):
account_id = "184d0409-2626-4c48-98b5-d383b9854a47"
base_url = "https://demo.docusign.net/restapi"
with open(file_path, "rb") as file:
document_base64 = base64.b64encode(file.read()).decode()
envelope_definition = {
"emailSubject": "Please sign this document",
"documents": [
{
"documentId": "1",
"name": "document.pdf",
"fileExtension": "pdf",
"documentBase64": document_base64
}
],
"recipients": {
"signers": [
{
"email": recipient_email,
"name": recipient_name,
"recipientId": "1",
"tabs": {
"signHereTabs": [
{
"documentId": "1",
"pageNumber": "1",
"xPosition": "100",
"yPosition": "100"
}
]
}
}
]
},
"status": "sent"
}
headers = {
"Authorization": f"Bearer {docusign_api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
f"{base_url}/v2.1/accounts/{account_id}/envelopes",
headers=headers,
json=envelope_definition
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
# Function to process the agreement
def process_agreement(file, recipient_email, recipient_name, state):
try:
text = extract_text_from_pdf(file.name)
if text.startswith("Error"):
return text, {}, {}, state
# Use Gemini for summarization
summary = summarize_agreement_with_gemini(text)
if summary.startswith("Error"):
return summary, {}, {}, state
docusign_response = send_to_docusign(file.name, recipient_email, recipient_name)
if "error" in docusign_response:
return summary, {}, docusign_response, state
return summary, {}, docusign_response, state
except Exception as e:
return f"Error: {e}", {}, {}, state
# Gradio interface
def main_interface(file, recipient_email, recipient_name, question, state):
if file is not None:
state["file"] = file
state["text"] = extract_text_from_pdf(file.name)
state["chat_history"] = [] # Initialize chat history
summary_output = ""
docusign_output = {}
chatbot_output = ""
if "file" in state:
if recipient_email and recipient_name:
summary_output, _, docusign_output, state = process_agreement(state["file"], recipient_email, recipient_name, state)
if question:
chatbot_output = generate_response_with_rag(question, state["file"].name, state)
state["chat_history"].append((question, chatbot_output)) # Update chat history
return summary_output, docusign_output, chatbot_output, state
# CSS for styling
css = """
.gradio-container {
background-image: url('https://huggingface.co/spaces/Nadaazakaria/DocWise/resolve/main/DALL%C2%B7E%202025-01-26%2011.43.33%20-%20A%20futuristic%20and%20sleek%20magical%20animated%20GIF-style%20icon%20design%20for%20%27DocWise%27%2C%20representing%20knowledge%2C%20documents%2C%20and%20wisdom.%20The%20design%20includes%20a%20glow.jpg');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}
.gradio-container h1,
.gradio-container .tabs > .tab-nav > .tab-button {
color: #FFF5E1 !important;
text-shadow: 0 0 5px rgba(255, 245, 225, 0.5);
}
.tabs {
background-color: #f0f0f0 !important;
border-radius: 10px !important;
padding: 20px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.tabs > .tab-nav {
background-color: #e0e0e0 !important;
border-radius: 5px !important;
margin-bottom: 15px !important;
}
.tabs > .tab-nav > .tab-button {
color: black !important;
font-weight: bold !important;
}
.tabs > .tab-nav > .tab-button.selected {
background-color: #d0d0d0 !important;
color: black !important;
}
#process-button, #chatbot-button {
background-color: white !important;
color: black !important;
border: 1px solid #ccc !important;
padding: 10px 20px !important;
border-radius: 5px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
transition: background-color 0.3s ease !important;
}
#process-button:hover, #chatbot-button:hover {
background-color: #f0f0f0 !important;
}
"""
# Gradio app
with gr.Blocks(css=css) as app:
gr.Markdown(
"""
<div style="text-align: center;">
<h1 id="main-title">
DocWise(Agreement Analyzer with Chatbot and Docusign Integration)
</h1>
</div>
""",
)
state = gr.State({})
file_input = gr.File(label="Upload Agreement (PDF)")
with gr.Tab("Agreement Processing", elem_id="agreement-tab"):
email_input = gr.Textbox(label="Recipient Email")
name_input = gr.Textbox(label="Recipient Name")
summary_output = gr.Textbox(label="Agreement Summary")
docusign_output = gr.JSON(label="DocuSign Response")
process_button = gr.Button("Process Agreement", elem_id="process-button")
with gr.Tab("Chatbot", elem_id="chatbot-tab"):
chatbot_question_input = gr.Textbox(label="Ask a Question")
chatbot_answer_output = gr.Textbox(label="Answer")
chatbot_button = gr.Button("Ask", elem_id="chatbot-button")
process_button.click(
main_interface,
inputs=[file_input, email_input, name_input, chatbot_question_input, state],
outputs=[summary_output, docusign_output, chatbot_answer_output, state]
)
chatbot_button.click(
main_interface,
inputs=[file_input, email_input, name_input, chatbot_question_input, state],
outputs=[summary_output, docusign_output, chatbot_answer_output, state]
)
app.launch(debug=True) |