File size: 1,200 Bytes
e7ebace abbaadb 0fecaab 100add5 3970b0a abbaadb e7ebace 0cbca3d 3970b0a 736df11 100add5 736df11 3970b0a 0cbca3d aee24dc 0cbca3d aee24dc 0cbca3d 64fe5a1 0cbca3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
input_ids = tokenizer('糾正句子裡的錯字:' + sentence + '_輸出句:', return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=200)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return edited_text
with gr.Blocks() as demo:
gr.Markdown(
"""
# 中文錯別字校正 - Chinese Spelling Correction
### Find Spelling Error and get the correction!
Start typing below to see the correction.
"""
)
#設定輸入元件
sent = gr.Textbox(label="Sentence", placeholder="input the sentence")
# 設定輸出元件
output = gr.Textbox(label="Result", placeholder="correction")
#設定按鈕
greet_btn = gr.Button("Correction")
#設定按鈕點選事件
greet_btn.click(fn=cged_correction, inputs=sent, outputs=output)
demo.launch() |