File size: 13,411 Bytes
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212c0e
 
 
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212c0e
 
12a115f
 
 
 
 
 
 
 
1212c0e
 
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212c0e
 
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import openai
import wget
import streamlit as st
from PIL import Image
from serpapi import GoogleSearch
import torch
from diffusers import StableDiffusionPipeline
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
import base64
from streamlit_player import st_player
from pytube import YouTube
from pytube import Search
import io
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation

os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443'
os.environ['STABILITY_KEY'] = 'sk-Ndzkpi6OYwM5fQgEJAVwRPbFZSMNyFk0GoZw1EvNtqVExGdi'
os.environ['GOOGLE_API'] = 'e77d5416608a110ea2babd7b2e33ede48b0c4159ade5cfd5cebbc7483c513ff3'
os.environ['OPENAI_KEY'] = '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'

stability_api = client.StabilityInference(
    key=os.environ['STABILITY_KEY'], # API Key reference.
    verbose=True, # Print debug messages.
    engine="stable-diffusion-v1-5", # Set the engine to use for generation.
    # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
    # stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)

def search_internet(question):
    params = {
        "q": question,
        "location": "Bengaluru, Karnataka, India",
        "hl": "hi",
        "gl": "in",
        "google_domain": "google.co.in",
        # "api_key": ""
        "api_key": os.environ['GOOGLE_API']
    }

    params = {
        "q": question,
        "location": "Bengaluru, Karnataka, India",
        "hl": "hi",
        "gl": "in",
        "google_domain": "google.co.in",
        # "api_key": ""
        "api_key": os.environ['GOOGLE_API']
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    organic_results = results["organic_results"]
  

    snippets = ""
    counter = 1
    for item in organic_results:
        snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n'
        counter += 1

    # snippets

    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print  reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''',
        temperature=0.49,
        max_tokens=256,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0)

    string_temp = response.choices[0].text

    st.write(string_temp)
    st.write(snippets)

# openai.api_key = ""
openai.api_key = os.environ['OPENAI_KEY']

def openai_response(PROMPT):
    response = openai.Image.create(
    prompt=PROMPT,
    n=1,
    size="256x256",
)
    return response["data"][0]["url"]

#page_bg_img = """
#<style>
#[data-testid="stAppViewContainer"] {
#background-color: #ffffff;
#opacity: 0.8;
#background-image:  repeating-radial-gradient( circle at 0 0, transparent 0, #ffffff 40px ), repeating-linear-gradient( #55a6f655, #55a6f6 );
#}
#</style>
#"""

#st.markdown(page_bg_img, unsafe_allow_html=True)
st.title("Welcome to :red[_HyperChat_]!!🤖")
st.title("How can I help?")

Input_type = st.radio(
    "**Input type:**",
    ('TEXT', 'SPEECH')
    )

if Input_type == 'TEXT':
    #page_bg_img2 = """
    #<style>
    #[data-testid="stAppViewContainer"] {
    #background-color: #e5e5f7;
    #opacity: 0.8;
    #background-size: 20px 20px;
    #background-image:  repeating-linear-gradient(0deg, #32d947, #32d947 1px, #e5e5f7 1px, #e5e5f7);
    #}
    #</style>
    #"""
    #st.markdown(page_bg_img, unsafe_allow_html=True)
    st.write('**You are now in Text input mode**')
    mytext = st.text_input('**Go on! Ask me anything:**')
    if st.button("SUBMIT"):
        question=mytext
        response = openai.Completion.create(
          model="text-davinci-003",
          prompt=f'''Your name is alexa and  knowledge cutoff date is 2021-09, and it is not aware of any events after that time. if the  
                    Answer to following questions is not  from your knowledge base or in case of queries like weather 
                      updates / stock updates / current news Etc which requires you to have internet connection  then print i don't have access to internet to answer your question, 
                      if  question is related to  image or  painting or drawing generation then print ipython type output   function gen_draw("detailed prompt of image to be generated")
                      if the question is related to playing a song or video or music of a singer then print ipython type output  function vid_tube("relevent search query")
                      if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") . 
                      if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
                      \nQuestion-{question}
                      \nAnswer -''',
          temperature=0.49,
          max_tokens=256,
          top_p=1,
          frequency_penalty=0,
          presence_penalty=0
        )
        string_temp=response.choices[0].text

        if ("gen_draw" in string_temp):
            try:
                # Set up our initial generation parameters.
                answers = stability_api.generate(
                prompt = mytext,
                seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
                        # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
                        # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
                steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
                cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
                    # Setting this value higher increases the strength in which it tries to match your prompt.
                    # Defaults to 7.0 if not specified.
                width=512, # Generation width, defaults to 512 if not included.
                height=512, # Generation height, defaults to 512 if not included.
                samples=1, # Number of images to generate, defaults to 1 if not included.
                sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
                                                    # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
                                                    # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
                )

                # Set up our warning to print to the console if the adult content classifier is tripped.
                # If adult content classifier is not tripped, save generated images.
                for resp in answers:
                    for artifact in resp.artifacts:
                        if artifact.finish_reason == generation.FILTER:
                            warnings.warn(
                                "Your request activated the API's safety filters and could not be processed."
                                "Please modify the prompt and try again.")
                        if artifact.type == generation.ARTIFACT_IMAGE:
                            img = Image.open(io.BytesIO(artifact.binary))
                            st.image(img)
                            img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
            except:        
                st.write('image is being generated please wait...')
                def extract_image_description(input_string):
                    return input_string.split('gen_draw("')[1].split('")')[0]
                prompt=extract_image_description(string_temp)
                # model_id = "CompVis/stable-diffusion-v1-4"
                model_id='runwayml/stable-diffusion-v1-5'
                device = "cuda"


                pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
                pipe = pipe.to(device)

                # prompt = "a photo of an astronaut riding a horse on mars"
                image = pipe(prompt).images[0]  
                
                image.save("astronaut_rides_horse.png")
                st.image(image)
                # image

        elif ("vid_tube" in string_temp):
            s = Search(mytext)
            search_res = s.results
            first_vid = search_res[0]
            print(first_vid)
            string = str(first_vid)
            video_id = string[string.index('=') + 1:-1]
            # print(video_id)
            YoutubeURL = "https://www.youtube.com/watch?v="
            OurURL = YoutubeURL + video_id
            st.write(OurURL)
            st_player(OurURL)

        elif ("don't" in string_temp or "internet" in string_temp  ):
            st.write('searching internet ')
            search_internet(question)

        else:
            st.write(string_temp)
    
elif Input_type == 'SPEECH':
    stt_button = Button(label="Speak", width=100)
    stt_button.js_on_event("button_click", CustomJS(code="""
        var recognition = new webkitSpeechRecognition();
        recognition.continuous = true;
        recognition.interimResults = true;
        recognition.onresult = function (e) {
            var value = "";
            for (var i = e.resultIndex; i < e.results.length; ++i) {
                if (e.results[i].isFinal) {
                    value += e.results[i][0].transcript;
                }
            }
            if ( value != "") {
                document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
            }
        }
        recognition.start();
        """))
    
    result = streamlit_bokeh_events(
    stt_button,
    events="GET_TEXT",
    key="listen",
    refresh_on_update=False,
    override_height=75,
    debounce_time=0)

    if result:
        if "GET_TEXT" in result:
            st.write(result.get("GET_TEXT"))
            question = result.get("GET_TEXT")
            response = openai.Completion.create(
            model="text-davinci-003",
            prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the  
                      Answer to following questions is not  from your knowledge base or in case of queries like weather 
                        updates / stock updates / current news Etc which requires you to have internet connection  then print i don't have access to internet to answer your question, 
                        if  question is related to  image or  painting or drawing generation then print ipython type output   function gen_draw("detailed prompt of image to be generated")
                        if the question is related to playing a song or video or music of a singer then print ipython type output  function vid_tube("relevent search query")
                        \nQuestion-{question}
                        \nAnswer -''',
            temperature=0.49,
            max_tokens=256,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
            )
            string_temp=response.choices[0].text

            if ("gen_draw" in string_temp):
                st.write('*image is being generated please wait..* ')
                def extract_image_description(input_string):
                    return input_string.split('gen_draw("')[1].split('")')[0]
                prompt=extract_image_description(string_temp)
                # model_id = "CompVis/stable-diffusion-v1-4"
                model_id='runwayml/stable-diffusion-v1-5'
                device = "cuda"

                pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
                pipe = pipe.to(device)

                # prompt = "a photo of an astronaut riding a horse on mars"
                image = pipe(prompt).images[0]  
                  
                image.save("astronaut_rides_horse.png")
                st.image(image)
                # image 
            
            elif ("vid_tube" in string_temp):
                s = Search(question)
                search_res = s.results
                first_vid = search_res[0]
                print(first_vid)
                string = str(first_vid)
                video_id = string[string.index('=') + 1:-1]
                # print(video_id)
                YoutubeURL = "https://www.youtube.com/watch?v="
                OurURL = YoutubeURL + video_id
                st.write(OurURL)
                st_player(OurURL)

            elif ("don't" in string_temp or "internet" in string_temp  ):
                st.write('*searching internet*')
                search_internet(question)
            else:
                st.write(string_temp)