Spaces:
Sleeping
Sleeping
File size: 40,276 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
"""
Algorithms for calculating min/max spanning trees/forests.
"""
from dataclasses import dataclass, field
from enum import Enum
from heapq import heappop, heappush
from itertools import count
from math import isnan
from operator import itemgetter
from queue import PriorityQueue
import networkx as nx
from networkx.utils import UnionFind, not_implemented_for, py_random_state
__all__ = [
"minimum_spanning_edges",
"maximum_spanning_edges",
"minimum_spanning_tree",
"maximum_spanning_tree",
"random_spanning_tree",
"partition_spanning_tree",
"EdgePartition",
"SpanningTreeIterator",
]
class EdgePartition(Enum):
"""
An enum to store the state of an edge partition. The enum is written to the
edges of a graph before being pasted to `kruskal_mst_edges`. Options are:
- EdgePartition.OPEN
- EdgePartition.INCLUDED
- EdgePartition.EXCLUDED
"""
OPEN = 0
INCLUDED = 1
EXCLUDED = 2
@not_implemented_for("multigraph")
@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data")
def boruvka_mst_edges(
G, minimum=True, weight="weight", keys=False, data=True, ignore_nan=False
):
"""Iterate over edges of a Borůvka's algorithm min/max spanning tree.
Parameters
----------
G : NetworkX Graph
The edges of `G` must have distinct weights,
otherwise the edges may not form a tree.
minimum : bool (default: True)
Find the minimum (True) or maximum (False) spanning tree.
weight : string (default: 'weight')
The name of the edge attribute holding the edge weights.
keys : bool (default: True)
This argument is ignored since this function is not
implemented for multigraphs; it exists only for consistency
with the other minimum spanning tree functions.
data : bool (default: True)
Flag for whether to yield edge attribute dicts.
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
If False, yield edges `(u, v)`.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
"""
# Initialize a forest, assuming initially that it is the discrete
# partition of the nodes of the graph.
forest = UnionFind(G)
def best_edge(component):
"""Returns the optimum (minimum or maximum) edge on the edge
boundary of the given set of nodes.
A return value of ``None`` indicates an empty boundary.
"""
sign = 1 if minimum else -1
minwt = float("inf")
boundary = None
for e in nx.edge_boundary(G, component, data=True):
wt = e[-1].get(weight, 1) * sign
if isnan(wt):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {e}"
raise ValueError(msg)
if wt < minwt:
minwt = wt
boundary = e
return boundary
# Determine the optimum edge in the edge boundary of each component
# in the forest.
best_edges = (best_edge(component) for component in forest.to_sets())
best_edges = [edge for edge in best_edges if edge is not None]
# If each entry was ``None``, that means the graph was disconnected,
# so we are done generating the forest.
while best_edges:
# Determine the optimum edge in the edge boundary of each
# component in the forest.
#
# This must be a sequence, not an iterator. In this list, the
# same edge may appear twice, in different orientations (but
# that's okay, since a union operation will be called on the
# endpoints the first time it is seen, but not the second time).
#
# Any ``None`` indicates that the edge boundary for that
# component was empty, so that part of the forest has been
# completed.
#
# TODO This can be parallelized, both in the outer loop over
# each component in the forest and in the computation of the
# minimum. (Same goes for the identical lines outside the loop.)
best_edges = (best_edge(component) for component in forest.to_sets())
best_edges = [edge for edge in best_edges if edge is not None]
# Join trees in the forest using the best edges, and yield that
# edge, since it is part of the spanning tree.
#
# TODO This loop can be parallelized, to an extent (the union
# operation must be atomic).
for u, v, d in best_edges:
if forest[u] != forest[v]:
if data:
yield u, v, d
else:
yield u, v
forest.union(u, v)
@nx._dispatch(
edge_attrs={"weight": None, "partition": None}, preserve_edge_attrs="data"
)
def kruskal_mst_edges(
G, minimum, weight="weight", keys=True, data=True, ignore_nan=False, partition=None
):
"""
Iterate over edge of a Kruskal's algorithm min/max spanning tree.
Parameters
----------
G : NetworkX Graph
The graph holding the tree of interest.
minimum : bool (default: True)
Find the minimum (True) or maximum (False) spanning tree.
weight : string (default: 'weight')
The name of the edge attribute holding the edge weights.
keys : bool (default: True)
If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
Otherwise `keys` is ignored.
data : bool (default: True)
Flag for whether to yield edge attribute dicts.
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
If False, yield edges `(u, v)`.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
partition : string (default: None)
The name of the edge attribute holding the partition data, if it exists.
Partition data is written to the edges using the `EdgePartition` enum.
If a partition exists, all included edges and none of the excluded edges
will appear in the final tree. Open edges may or may not be used.
Yields
------
edge tuple
The edges as discovered by Kruskal's method. Each edge can
take the following forms: `(u, v)`, `(u, v, d)` or `(u, v, k, d)`
depending on the `key` and `data` parameters
"""
subtrees = UnionFind()
if G.is_multigraph():
edges = G.edges(keys=True, data=True)
else:
edges = G.edges(data=True)
"""
Sort the edges of the graph with respect to the partition data.
Edges are returned in the following order:
* Included edges
* Open edges from smallest to largest weight
* Excluded edges
"""
included_edges = []
open_edges = []
for e in edges:
d = e[-1]
wt = d.get(weight, 1)
if isnan(wt):
if ignore_nan:
continue
raise ValueError(f"NaN found as an edge weight. Edge {e}")
edge = (wt,) + e
if d.get(partition) == EdgePartition.INCLUDED:
included_edges.append(edge)
elif d.get(partition) == EdgePartition.EXCLUDED:
continue
else:
open_edges.append(edge)
if minimum:
sorted_open_edges = sorted(open_edges, key=itemgetter(0))
else:
sorted_open_edges = sorted(open_edges, key=itemgetter(0), reverse=True)
# Condense the lists into one
included_edges.extend(sorted_open_edges)
sorted_edges = included_edges
del open_edges, sorted_open_edges, included_edges
# Multigraphs need to handle edge keys in addition to edge data.
if G.is_multigraph():
for wt, u, v, k, d in sorted_edges:
if subtrees[u] != subtrees[v]:
if keys:
if data:
yield u, v, k, d
else:
yield u, v, k
else:
if data:
yield u, v, d
else:
yield u, v
subtrees.union(u, v)
else:
for wt, u, v, d in sorted_edges:
if subtrees[u] != subtrees[v]:
if data:
yield u, v, d
else:
yield u, v
subtrees.union(u, v)
@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data")
def prim_mst_edges(G, minimum, weight="weight", keys=True, data=True, ignore_nan=False):
"""Iterate over edges of Prim's algorithm min/max spanning tree.
Parameters
----------
G : NetworkX Graph
The graph holding the tree of interest.
minimum : bool (default: True)
Find the minimum (True) or maximum (False) spanning tree.
weight : string (default: 'weight')
The name of the edge attribute holding the edge weights.
keys : bool (default: True)
If `G` is a multigraph, `keys` controls whether edge keys ar yielded.
Otherwise `keys` is ignored.
data : bool (default: True)
Flag for whether to yield edge attribute dicts.
If True, yield edges `(u, v, d)`, where `d` is the attribute dict.
If False, yield edges `(u, v)`.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
"""
is_multigraph = G.is_multigraph()
push = heappush
pop = heappop
nodes = set(G)
c = count()
sign = 1 if minimum else -1
while nodes:
u = nodes.pop()
frontier = []
visited = {u}
if is_multigraph:
for v, keydict in G.adj[u].items():
for k, d in keydict.items():
wt = d.get(weight, 1) * sign
if isnan(wt):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(u, v, k, d)}"
raise ValueError(msg)
push(frontier, (wt, next(c), u, v, k, d))
else:
for v, d in G.adj[u].items():
wt = d.get(weight, 1) * sign
if isnan(wt):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(u, v, d)}"
raise ValueError(msg)
push(frontier, (wt, next(c), u, v, d))
while nodes and frontier:
if is_multigraph:
W, _, u, v, k, d = pop(frontier)
else:
W, _, u, v, d = pop(frontier)
if v in visited or v not in nodes:
continue
# Multigraphs need to handle edge keys in addition to edge data.
if is_multigraph and keys:
if data:
yield u, v, k, d
else:
yield u, v, k
else:
if data:
yield u, v, d
else:
yield u, v
# update frontier
visited.add(v)
nodes.discard(v)
if is_multigraph:
for w, keydict in G.adj[v].items():
if w in visited:
continue
for k2, d2 in keydict.items():
new_weight = d2.get(weight, 1) * sign
if isnan(new_weight):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(v, w, k2, d2)}"
raise ValueError(msg)
push(frontier, (new_weight, next(c), v, w, k2, d2))
else:
for w, d2 in G.adj[v].items():
if w in visited:
continue
new_weight = d2.get(weight, 1) * sign
if isnan(new_weight):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(v, w, d2)}"
raise ValueError(msg)
push(frontier, (new_weight, next(c), v, w, d2))
ALGORITHMS = {
"boruvka": boruvka_mst_edges,
"borůvka": boruvka_mst_edges,
"kruskal": kruskal_mst_edges,
"prim": prim_mst_edges,
}
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data")
def minimum_spanning_edges(
G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False
):
"""Generate edges in a minimum spanning forest of an undirected
weighted graph.
A minimum spanning tree is a subgraph of the graph (a tree)
with the minimum sum of edge weights. A spanning forest is a
union of the spanning trees for each connected component of the graph.
Parameters
----------
G : undirected Graph
An undirected graph. If `G` is connected, then the algorithm finds a
spanning tree. Otherwise, a spanning forest is found.
algorithm : string
The algorithm to use when finding a minimum spanning tree. Valid
choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'.
weight : string
Edge data key to use for weight (default 'weight').
keys : bool
Whether to yield edge key in multigraphs in addition to the edge.
If `G` is not a multigraph, this is ignored.
data : bool, optional
If True yield the edge data along with the edge.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
Returns
-------
edges : iterator
An iterator over edges in a maximum spanning tree of `G`.
Edges connecting nodes `u` and `v` are represented as tuples:
`(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`
If `G` is a multigraph, `keys` indicates whether the edge key `k` will
be reported in the third position in the edge tuple. `data` indicates
whether the edge datadict `d` will appear at the end of the edge tuple.
If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True
or `(u, v)` if `data` is False.
Examples
--------
>>> from networkx.algorithms import tree
Find minimum spanning edges by Kruskal's algorithm
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2)
>>> mst = tree.minimum_spanning_edges(G, algorithm="kruskal", data=False)
>>> edgelist = list(mst)
>>> sorted(sorted(e) for e in edgelist)
[[0, 1], [1, 2], [2, 3]]
Find minimum spanning edges by Prim's algorithm
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2)
>>> mst = tree.minimum_spanning_edges(G, algorithm="prim", data=False)
>>> edgelist = list(mst)
>>> sorted(sorted(e) for e in edgelist)
[[0, 1], [1, 2], [2, 3]]
Notes
-----
For Borůvka's algorithm, each edge must have a weight attribute, and
each edge weight must be distinct.
For the other algorithms, if the graph edges do not have a weight
attribute a default weight of 1 will be used.
Modified code from David Eppstein, April 2006
http://www.ics.uci.edu/~eppstein/PADS/
"""
try:
algo = ALGORITHMS[algorithm]
except KeyError as err:
msg = f"{algorithm} is not a valid choice for an algorithm."
raise ValueError(msg) from err
return algo(
G, minimum=True, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan
)
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight", preserve_edge_attrs="data")
def maximum_spanning_edges(
G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False
):
"""Generate edges in a maximum spanning forest of an undirected
weighted graph.
A maximum spanning tree is a subgraph of the graph (a tree)
with the maximum possible sum of edge weights. A spanning forest is a
union of the spanning trees for each connected component of the graph.
Parameters
----------
G : undirected Graph
An undirected graph. If `G` is connected, then the algorithm finds a
spanning tree. Otherwise, a spanning forest is found.
algorithm : string
The algorithm to use when finding a maximum spanning tree. Valid
choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'.
weight : string
Edge data key to use for weight (default 'weight').
keys : bool
Whether to yield edge key in multigraphs in addition to the edge.
If `G` is not a multigraph, this is ignored.
data : bool, optional
If True yield the edge data along with the edge.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
Returns
-------
edges : iterator
An iterator over edges in a maximum spanning tree of `G`.
Edges connecting nodes `u` and `v` are represented as tuples:
`(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)`
If `G` is a multigraph, `keys` indicates whether the edge key `k` will
be reported in the third position in the edge tuple. `data` indicates
whether the edge datadict `d` will appear at the end of the edge tuple.
If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True
or `(u, v)` if `data` is False.
Examples
--------
>>> from networkx.algorithms import tree
Find maximum spanning edges by Kruskal's algorithm
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2)
>>> mst = tree.maximum_spanning_edges(G, algorithm="kruskal", data=False)
>>> edgelist = list(mst)
>>> sorted(sorted(e) for e in edgelist)
[[0, 1], [0, 3], [1, 2]]
Find maximum spanning edges by Prim's algorithm
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3
>>> mst = tree.maximum_spanning_edges(G, algorithm="prim", data=False)
>>> edgelist = list(mst)
>>> sorted(sorted(e) for e in edgelist)
[[0, 1], [0, 3], [2, 3]]
Notes
-----
For Borůvka's algorithm, each edge must have a weight attribute, and
each edge weight must be distinct.
For the other algorithms, if the graph edges do not have a weight
attribute a default weight of 1 will be used.
Modified code from David Eppstein, April 2006
http://www.ics.uci.edu/~eppstein/PADS/
"""
try:
algo = ALGORITHMS[algorithm]
except KeyError as err:
msg = f"{algorithm} is not a valid choice for an algorithm."
raise ValueError(msg) from err
return algo(
G, minimum=False, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan
)
@nx._dispatch(preserve_all_attrs=True)
def minimum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False):
"""Returns a minimum spanning tree or forest on an undirected graph `G`.
Parameters
----------
G : undirected graph
An undirected graph. If `G` is connected, then the algorithm finds a
spanning tree. Otherwise, a spanning forest is found.
weight : str
Data key to use for edge weights.
algorithm : string
The algorithm to use when finding a minimum spanning tree. Valid
choices are 'kruskal', 'prim', or 'boruvka'. The default is
'kruskal'.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
Returns
-------
G : NetworkX Graph
A minimum spanning tree or forest.
Examples
--------
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2)
>>> T = nx.minimum_spanning_tree(G)
>>> sorted(T.edges(data=True))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
Notes
-----
For Borůvka's algorithm, each edge must have a weight attribute, and
each edge weight must be distinct.
For the other algorithms, if the graph edges do not have a weight
attribute a default weight of 1 will be used.
There may be more than one tree with the same minimum or maximum weight.
See :mod:`networkx.tree.recognition` for more detailed definitions.
Isolated nodes with self-loops are in the tree as edgeless isolated nodes.
"""
edges = minimum_spanning_edges(
G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan
)
T = G.__class__() # Same graph class as G
T.graph.update(G.graph)
T.add_nodes_from(G.nodes.items())
T.add_edges_from(edges)
return T
@nx._dispatch(preserve_all_attrs=True)
def partition_spanning_tree(
G, minimum=True, weight="weight", partition="partition", ignore_nan=False
):
"""
Find a spanning tree while respecting a partition of edges.
Edges can be flagged as either `INCLUDED` which are required to be in the
returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`.
This is used in the SpanningTreeIterator to create new partitions following
the algorithm of Sörensen and Janssens [1]_.
Parameters
----------
G : undirected graph
An undirected graph.
minimum : bool (default: True)
Determines whether the returned tree is the minimum spanning tree of
the partition of the maximum one.
weight : str
Data key to use for edge weights.
partition : str
The key for the edge attribute containing the partition
data on the graph. Edges can be included, excluded or open using the
`EdgePartition` enum.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
Returns
-------
G : NetworkX Graph
A minimum spanning tree using all of the included edges in the graph and
none of the excluded edges.
References
----------
.. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning
trees in order of increasing cost, Pesquisa Operacional, 2005-08,
Vol. 25 (2), p. 219-229,
https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en
"""
edges = kruskal_mst_edges(
G,
minimum,
weight,
keys=True,
data=True,
ignore_nan=ignore_nan,
partition=partition,
)
T = G.__class__() # Same graph class as G
T.graph.update(G.graph)
T.add_nodes_from(G.nodes.items())
T.add_edges_from(edges)
return T
@nx._dispatch(preserve_all_attrs=True)
def maximum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False):
"""Returns a maximum spanning tree or forest on an undirected graph `G`.
Parameters
----------
G : undirected graph
An undirected graph. If `G` is connected, then the algorithm finds a
spanning tree. Otherwise, a spanning forest is found.
weight : str
Data key to use for edge weights.
algorithm : string
The algorithm to use when finding a maximum spanning tree. Valid
choices are 'kruskal', 'prim', or 'boruvka'. The default is
'kruskal'.
ignore_nan : bool (default: False)
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
Returns
-------
G : NetworkX Graph
A maximum spanning tree or forest.
Examples
--------
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2)
>>> T = nx.maximum_spanning_tree(G)
>>> sorted(T.edges(data=True))
[(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})]
Notes
-----
For Borůvka's algorithm, each edge must have a weight attribute, and
each edge weight must be distinct.
For the other algorithms, if the graph edges do not have a weight
attribute a default weight of 1 will be used.
There may be more than one tree with the same minimum or maximum weight.
See :mod:`networkx.tree.recognition` for more detailed definitions.
Isolated nodes with self-loops are in the tree as edgeless isolated nodes.
"""
edges = maximum_spanning_edges(
G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan
)
edges = list(edges)
T = G.__class__() # Same graph class as G
T.graph.update(G.graph)
T.add_nodes_from(G.nodes.items())
T.add_edges_from(edges)
return T
@py_random_state(3)
@nx._dispatch(preserve_edge_attrs=True)
def random_spanning_tree(G, weight=None, *, multiplicative=True, seed=None):
"""
Sample a random spanning tree using the edges weights of `G`.
This function supports two different methods for determining the
probability of the graph. If ``multiplicative=True``, the probability
is based on the product of edge weights, and if ``multiplicative=False``
it is based on the sum of the edge weight. However, since it is
easier to determine the total weight of all spanning trees for the
multiplicative version, that is significantly faster and should be used if
possible. Additionally, setting `weight` to `None` will cause a spanning tree
to be selected with uniform probability.
The function uses algorithm A8 in [1]_ .
Parameters
----------
G : nx.Graph
An undirected version of the original graph.
weight : string
The edge key for the edge attribute holding edge weight.
multiplicative : bool, default=True
If `True`, the probability of each tree is the product of its edge weight
over the sum of the product of all the spanning trees in the graph. If
`False`, the probability is the sum of its edge weight over the sum of
the sum of weights for all spanning trees in the graph.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
nx.Graph
A spanning tree using the distribution defined by the weight of the tree.
References
----------
.. [1] V. Kulkarni, Generating random combinatorial objects, Journal of
Algorithms, 11 (1990), pp. 185–207
"""
def find_node(merged_nodes, node):
"""
We can think of clusters of contracted nodes as having one
representative in the graph. Each node which is not in merged_nodes
is still its own representative. Since a representative can be later
contracted, we need to recursively search though the dict to find
the final representative, but once we know it we can use path
compression to speed up the access of the representative for next time.
This cannot be replaced by the standard NetworkX union_find since that
data structure will merge nodes with less representing nodes into the
one with more representing nodes but this function requires we merge
them using the order that contract_edges contracts using.
Parameters
----------
merged_nodes : dict
The dict storing the mapping from node to representative
node
The node whose representative we seek
Returns
-------
The representative of the `node`
"""
if node not in merged_nodes:
return node
else:
rep = find_node(merged_nodes, merged_nodes[node])
merged_nodes[node] = rep
return rep
def prepare_graph():
"""
For the graph `G`, remove all edges not in the set `V` and then
contract all edges in the set `U`.
Returns
-------
A copy of `G` which has had all edges not in `V` removed and all edges
in `U` contracted.
"""
# The result is a MultiGraph version of G so that parallel edges are
# allowed during edge contraction
result = nx.MultiGraph(incoming_graph_data=G)
# Remove all edges not in V
edges_to_remove = set(result.edges()).difference(V)
result.remove_edges_from(edges_to_remove)
# Contract all edges in U
#
# Imagine that you have two edges to contract and they share an
# endpoint like this:
# [0] ----- [1] ----- [2]
# If we contract (0, 1) first, the contraction function will always
# delete the second node it is passed so the resulting graph would be
# [0] ----- [2]
# and edge (1, 2) no longer exists but (0, 2) would need to be contracted
# in its place now. That is why I use the below dict as a merge-find
# data structure with path compression to track how the nodes are merged.
merged_nodes = {}
for u, v in U:
u_rep = find_node(merged_nodes, u)
v_rep = find_node(merged_nodes, v)
# We cannot contract a node with itself
if u_rep == v_rep:
continue
nx.contracted_nodes(result, u_rep, v_rep, self_loops=False, copy=False)
merged_nodes[v_rep] = u_rep
return merged_nodes, result
def spanning_tree_total_weight(G, weight):
"""
Find the sum of weights of the spanning trees of `G` using the
appropriate `method`.
This is easy if the chosen method is 'multiplicative', since we can
use Kirchhoff's Tree Matrix Theorem directly. However, with the
'additive' method, this process is slightly more complex and less
computationally efficient as we have to find the number of spanning
trees which contain each possible edge in the graph.
Parameters
----------
G : NetworkX Graph
The graph to find the total weight of all spanning trees on.
weight : string
The key for the weight edge attribute of the graph.
Returns
-------
float
The sum of either the multiplicative or additive weight for all
spanning trees in the graph.
"""
if multiplicative:
return nx.total_spanning_tree_weight(G, weight)
else:
# There are two cases for the total spanning tree additive weight.
# 1. There is one edge in the graph. Then the only spanning tree is
# that edge itself, which will have a total weight of that edge
# itself.
if G.number_of_edges() == 1:
return G.edges(data=weight).__iter__().__next__()[2]
# 2. There are more than two edges in the graph. Then, we can find the
# total weight of the spanning trees using the formula in the
# reference paper: take the weight of that edge and multiple it by
# the number of spanning trees which have to include that edge. This
# can be accomplished by contracting the edge and finding the
# multiplicative total spanning tree weight if the weight of each edge
# is assumed to be 1, which is conveniently built into networkx already,
# by calling total_spanning_tree_weight with weight=None
else:
total = 0
for u, v, w in G.edges(data=weight):
total += w * nx.total_spanning_tree_weight(
nx.contracted_edge(G, edge=(u, v), self_loops=False), None
)
return total
U = set()
st_cached_value = 0
V = set(G.edges())
shuffled_edges = list(G.edges())
seed.shuffle(shuffled_edges)
for u, v in shuffled_edges:
e_weight = G[u][v][weight] if weight is not None else 1
node_map, prepared_G = prepare_graph()
G_total_tree_weight = spanning_tree_total_weight(prepared_G, weight)
# Add the edge to U so that we can compute the total tree weight
# assuming we include that edge
# Now, if (u, v) cannot exist in G because it is fully contracted out
# of existence, then it by definition cannot influence G_e's Kirchhoff
# value. But, we also cannot pick it.
rep_edge = (find_node(node_map, u), find_node(node_map, v))
# Check to see if the 'representative edge' for the current edge is
# in prepared_G. If so, then we can pick it.
if rep_edge in prepared_G.edges:
prepared_G_e = nx.contracted_edge(
prepared_G, edge=rep_edge, self_loops=False
)
G_e_total_tree_weight = spanning_tree_total_weight(prepared_G_e, weight)
if multiplicative:
threshold = e_weight * G_e_total_tree_weight / G_total_tree_weight
else:
numerator = (
st_cached_value + e_weight
) * nx.total_spanning_tree_weight(prepared_G_e) + G_e_total_tree_weight
denominator = (
st_cached_value * nx.total_spanning_tree_weight(prepared_G)
+ G_total_tree_weight
)
threshold = numerator / denominator
else:
threshold = 0.0
z = seed.uniform(0.0, 1.0)
if z > threshold:
# Remove the edge from V since we did not pick it.
V.remove((u, v))
else:
# Add the edge to U since we picked it.
st_cached_value += e_weight
U.add((u, v))
# If we decide to keep an edge, it may complete the spanning tree.
if len(U) == G.number_of_nodes() - 1:
spanning_tree = nx.Graph()
spanning_tree.add_edges_from(U)
return spanning_tree
raise Exception(f"Something went wrong! Only {len(U)} edges in the spanning tree!")
class SpanningTreeIterator:
"""
Iterate over all spanning trees of a graph in either increasing or
decreasing cost.
Notes
-----
This iterator uses the partition scheme from [1]_ (included edges,
excluded edges and open edges) as well as a modified Kruskal's Algorithm
to generate minimum spanning trees which respect the partition of edges.
For spanning trees with the same weight, ties are broken arbitrarily.
References
----------
.. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning
trees in order of increasing cost, Pesquisa Operacional, 2005-08,
Vol. 25 (2), p. 219-229,
https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en
"""
@dataclass(order=True)
class Partition:
"""
This dataclass represents a partition and stores a dict with the edge
data and the weight of the minimum spanning tree of the partition dict.
"""
mst_weight: float
partition_dict: dict = field(compare=False)
def __copy__(self):
return SpanningTreeIterator.Partition(
self.mst_weight, self.partition_dict.copy()
)
def __init__(self, G, weight="weight", minimum=True, ignore_nan=False):
"""
Initialize the iterator
Parameters
----------
G : nx.Graph
The directed graph which we need to iterate trees over
weight : String, default = "weight"
The edge attribute used to store the weight of the edge
minimum : bool, default = True
Return the trees in increasing order while true and decreasing order
while false.
ignore_nan : bool, default = False
If a NaN is found as an edge weight normally an exception is raised.
If `ignore_nan is True` then that edge is ignored instead.
"""
self.G = G.copy()
self.weight = weight
self.minimum = minimum
self.ignore_nan = ignore_nan
# Randomly create a key for an edge attribute to hold the partition data
self.partition_key = (
"SpanningTreeIterators super secret partition attribute name"
)
def __iter__(self):
"""
Returns
-------
SpanningTreeIterator
The iterator object for this graph
"""
self.partition_queue = PriorityQueue()
self._clear_partition(self.G)
mst_weight = partition_spanning_tree(
self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan
).size(weight=self.weight)
self.partition_queue.put(
self.Partition(mst_weight if self.minimum else -mst_weight, {})
)
return self
def __next__(self):
"""
Returns
-------
(multi)Graph
The spanning tree of next greatest weight, which ties broken
arbitrarily.
"""
if self.partition_queue.empty():
del self.G, self.partition_queue
raise StopIteration
partition = self.partition_queue.get()
self._write_partition(partition)
next_tree = partition_spanning_tree(
self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan
)
self._partition(partition, next_tree)
self._clear_partition(next_tree)
return next_tree
def _partition(self, partition, partition_tree):
"""
Create new partitions based of the minimum spanning tree of the
current minimum partition.
Parameters
----------
partition : Partition
The Partition instance used to generate the current minimum spanning
tree.
partition_tree : nx.Graph
The minimum spanning tree of the input partition.
"""
# create two new partitions with the data from the input partition dict
p1 = self.Partition(0, partition.partition_dict.copy())
p2 = self.Partition(0, partition.partition_dict.copy())
for e in partition_tree.edges:
# determine if the edge was open or included
if e not in partition.partition_dict:
# This is an open edge
p1.partition_dict[e] = EdgePartition.EXCLUDED
p2.partition_dict[e] = EdgePartition.INCLUDED
self._write_partition(p1)
p1_mst = partition_spanning_tree(
self.G,
self.minimum,
self.weight,
self.partition_key,
self.ignore_nan,
)
p1_mst_weight = p1_mst.size(weight=self.weight)
if nx.is_connected(p1_mst):
p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight
self.partition_queue.put(p1.__copy__())
p1.partition_dict = p2.partition_dict.copy()
def _write_partition(self, partition):
"""
Writes the desired partition into the graph to calculate the minimum
spanning tree.
Parameters
----------
partition : Partition
A Partition dataclass describing a partition on the edges of the
graph.
"""
for u, v, d in self.G.edges(data=True):
if (u, v) in partition.partition_dict:
d[self.partition_key] = partition.partition_dict[(u, v)]
else:
d[self.partition_key] = EdgePartition.OPEN
def _clear_partition(self, G):
"""
Removes partition data from the graph
"""
for u, v, d in G.edges(data=True):
if self.partition_key in d:
del d[self.partition_key]
|