File size: 3,461 Bytes
4495c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import argparse
from tempfile import NamedTemporaryFile
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

def process_pdf(api_key, pdf_path):
    os.environ["OPENAI_API_KEY"] = api_key
    questions_path = "./Prompts/summary_tool_questions.md"
    prompt_path = "./Prompts/summary_tool_system_prompt.md"
    
    with open(pdf_path, "rb") as file:
        with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
            temp_pdf.write(file.read())
            temp_pdf_path = temp_pdf.name

    loader = PyPDFLoader(temp_pdf_path)
    docs = loader.load()

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
    splits = text_splitter.split_documents(docs)

    vectorstore = FAISS.from_documents(
        documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large")
    )
    retriever = vectorstore.as_retriever(search_kwargs={"k": 10})

    if os.path.exists(prompt_path):
        with open(prompt_path, "r") as file:
            system_prompt = file.read()
    else:
        raise FileNotFoundError(f"The specified file was not found: {prompt_path}")

    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            ("human", "{input}"),
        ]
    )

    llm = ChatOpenAI(model="gpt-4o")
    question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context")
    rag_chain = create_retrieval_chain(retriever, question_answer_chain)

    if os.path.exists(questions_path):
        with open(questions_path, "r") as file:
            questions = [line.strip() for line in file.readlines() if line.strip()]
    else:
        raise FileNotFoundError(f"The specified file was not found: {questions_path}")

    qa_results = []
    for question in questions:
        result = rag_chain.invoke({"input": question})
        answer = result["answer"]
        qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n"
        qa_results.append(qa_text)

    os.remove(temp_pdf_path)

    return qa_results

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate a summary for a single PDF.")
    parser.add_argument("api_key", type=str, help="OpenAI API Key")
    parser.add_argument("pdf_path", type=str, help="Path to the PDF file")

    args = parser.parse_args()

    try:
        results = process_pdf(args.api_key, args.pdf_path)
        markdown_text = "\n".join(results)

        # Define and create the output directory if it doesn't exist
        output_folder = "CAPS_Summaries"
        os.makedirs(output_folder, exist_ok=True)
        
        # Save the results to a Markdown file
        base_name = os.path.splitext(os.path.basename(args.pdf_path))[0]
        output_file_path = os.path.join(output_folder, f"{base_name}_Summary.md")
        with open(output_file_path, "w") as output_file:
            output_file.write(markdown_text)

        print(f"Summary saved to {output_file_path}")
    except Exception as e:
        print(f"An error occurred: {e}")