File size: 1,658 Bytes
69591a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
import torch


def main():
    st.set_page_config(
        page_title="Hello",
        page_icon="🧬",
        layout="wide",
    )
    st.write("# Welcome to DN-AI! πŸ‘‹")

    st.write(
        "This is a web application for the DN-AI project, which aims to provide an easy-to-use interface for analyzing and processing fiber images."
    )
    st.write("## Features")
    st.write(
        "- **Image loading**: The application accepts CZI file, jpeg and PNG file. \n"
        "- **Image segmentation**: The application provides a set of tools to segment the DNA fiber and measure the ratio between analogs. \n"
    )
    st.write("## Technical details")
    cols = st.columns(2)
    with cols[0]:
        st.write("### Source")
        st.write("The source code for this application is available on GitHub.")
        """

        [![Repo](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/ClementPla/DeepFiberQ/tree/relabelled) 



        """
        st.markdown("<br>", unsafe_allow_html=True)

    with cols[1]:
        st.write("### Device ")
        st.write("If available, the application will try to use a GPU for processing.")
        device = "GPU" if torch.cuda.is_available() else "CPU"
        cols = st.columns(3)
        with cols[0]:
            st.write("Running on:")
        with cols[1]:
            st.button(device, icon="βš™οΈ", disabled=True)
        if not torch.cuda.is_available():
            with cols[2]:
                st.warning("The application will run on CPU, which may be slower.")


if __name__ == "__main__":
    main()