File size: 13,569 Bytes
3a81f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr # Gradio package for interface
import sys          # System package for path dependencies
sys.path.append('Interface_Dependencies')
sys.path.append('Engineering-Clinic-Emerging-AI-Design-Interface/Interface_Dependencies')
sys.path.append('Engineering-Clinic-Emerging-AI-Design-Interface/yolov7-main')
sys.path.append('./')  # to run '$ python *.py' files in subdirectories

from run_methods import run_all, correct_video


# Gradio Interface Code
with gr.Blocks(title="yolov7 Interface",theme=gr.themes.Base()) as demo:
    gr.Markdown(
    """
    # Image & Video Interface for yolov7 Model
    Upload your own image or video and watch yolov7 try to guess what it is!
    """)
    # For for input & output settings
    with gr.Row() as file_settings:
        # Allows choice for uploading image or video [for all]
        file_type = gr.Radio(label="File Type",info="Choose 'Image' if you are uploading an image, Choose 'Video' if you are uploading a video",
                             choices=['Image','Video'],value='Image',show_label=True,interactive=True,visible=True)
        # Allows choice of source, from computer or webcam [for all]
        source_type = gr.Radio(label="Source Type",info="Choose 'Computer' if you are uploading from your computer, Choose 'Webcam' if you would like to use your webcam",
                             choices=['Computer','Webcam'],value='Computer',show_label=True,interactive=True,visible=True)
        # Allows choice of which convolutional layer to show (1-17) [only for images]
        conv_layer = gr.Slider(label="Convolution Layer",info="Choose a whole number from 1 to 17 to see the corresponding convolutional layer",
                               minimum=1,maximum=17,value=1,interactive=True,step=1,show_label=True)
        # Allows choice if video from webcam is streaming or uploaded [only for webcam videos]
        video_stream = gr.Checkbox(label="Stream from webcam?",info="Check this box if you would like to stream from your webcam",value=False,show_label=True,interactive=True,visible=False)
        # Allows choice of which smooth gradient output to show (1-3) [only for images]
        output_map = gr.Slider(label="Map Output Number",info="Choose a whole number from 1 to 3 to see the corresponding attribution map",
                               minimum=1,maximum=3,value=1,interactive=True,step=1,show_label=True)
    # For all inputs & outputs
    with gr.Row() as inputs_outputs:
        # Default input image: Visible, Upload from computer
        input_im = gr.Image(source="upload",type='filepath',label="Input Image",
                            show_download_button=True,show_share_button=True,interactive=True,visible=True)
        # Default Boxed output image: Visible
        output_box_im = gr.Image(type='filepath',label="Output Image",
                             show_download_button=True,show_share_button=True,interactive=False,visible=True)
        # Defualt Convolutional output image: Visible
        output_conv_im = gr.Image(type='filepath',label="Output Convolution",
                                  show_download_button=True,show_share_button=True,interactive=False,visible=True)
        # Default Gradient output image: Visible
        output_grad_im = gr.Image(type='filepath',label="Output Smooth Gradient",
                                  show_download_button=True,show_share_button=True,interactive=False,visible=True)
        # Default label output textbox: Visible
        labels = gr.Textbox(label='Top Predictions', value = "")
        # Default time output textbox: Visible
        formatted_time = gr.Textbox(label = 'Time to Run in Seconds:', value = "")
        
        # Default input video: Not visible, Upload from computer
        input_vid =  gr.Video(source="upload",label="Input Video",
                              show_share_button=True,interactive=True,visible=False)
        # Default Boxed output video: Not visible
        output_box_vid = gr.Video(label="Output Video",show_share_button=True,visible=False)
    
    # List of components for clearing
    clear_comp_list = [input_im, output_box_im, output_conv_im, output_grad_im, labels, formatted_time, input_vid, output_box_vid]
    
    # For start & clear buttons
    with gr.Row() as buttons:
        start_but = gr.Button(label="Start")
        clear_but = gr.ClearButton(value='Clear All',components=clear_comp_list,
                   interactive=True,visible=True)
        
    # For model settings
    with gr.Row() as model_settings:
        # Pixel size of the inference [Possibly useless, may remove]
        inf_size = gr.Number(label='Inference Size (pixels)',value=640,precision=0)
        # Object confidence threshold
        obj_conf_thr = gr.Number(label='Object Confidence Threshold',value=0.25)
        # Intersection of union threshold
        iou_thr = gr.Number(label='IOU threshold for NMS',value=0.45)
        # Agnostic NMS boolean
        agnostic_nms = gr.Checkbox(label='Agnostic NMS',value=True)
        # Normailze gradient boolean
        norm = gr.Checkbox(label='Normalize Gradient',value=False,visible=True)
    
    def change_file_type(file, source, is_stream):
        """
        Changes the visible components of the gradio interface

        Args:
            file (str): Type of the file (image or video)
            source (str): If the file is uploaded or from webcam
            is_stream (bool): If the video is streaming or uploaded

        Returns:
            Dictionary: Each component of the interface that needs to be updated.
        """
        if file == "Image":
            if source == "Computer":
                return {
                    conv_layer: gr.Slider(visible=True),
                    video_stream: gr.Checkbox(visible=False, value=False),
                    output_map: gr.Slider(visible=True),
                    input_im: gr.Image(source="upload",type='filepath',label="Input Image",
                            show_download_button=True,show_share_button=True,interactive=True,visible=True,streaming=False),
                    output_box_im: gr.Image(visible=True),
                    output_conv_im: gr.Image(visible=True),
                    output_grad_im: gr.Image(visible=True),
                    input_vid: gr.Video(visible=False),
                    output_box_vid: gr.Video(visible=False),
                    norm: gr.Checkbox(visible=True),
                    labels: gr.Textbox(visible=True),
                    formatted_time: gr.Textbox(visible=True)
                }
            elif source == "Webcam":
                return {
                    conv_layer: gr.Slider(visible=True),
                    video_stream: gr.Checkbox(visible=False, value=False),
                    output_map: gr.Slider(visible=True),
                    input_im: gr.Image(type='pil',source="webcam",label="Input Image",
                                       visible=True,interactive=True,streaming=False),
                    output_box_im: gr.Image(visible=True),
                    output_conv_im: gr.Image(visible=True),
                    output_grad_im: gr.Image(visible=True),
                    input_vid: gr.Video(visible=False),
                    output_box_vid: gr.Video(visible=False),
                    norm: gr.Checkbox(visible=True),
                    labels: gr.Textbox(visible=True),
                    formatted_time: gr.Textbox(visible=True)
                }
        elif file == "Video":
            if source == "Computer":
                return {
                    conv_layer: gr.Slider(visible=False),
                    video_stream: gr.Checkbox(visible=False, value=False),
                    output_map: gr.Slider(visible=False),
                    input_im: gr.Image(visible=False,streaming=False),
                    output_box_im: gr.Image(visible=False),
                    output_conv_im: gr.Image(visible=False),
                    output_grad_im: gr.Image(visible=False),
                    input_vid: gr.Video(source="upload",label="Input Video",
                              show_share_button=True,interactive=True,visible=True),
                    output_box_vid: gr.Video(label="Output Video",show_share_button=True,visible=True),
                    norm: gr.Checkbox(visible=False),
                    labels: gr.Textbox(visible=False),
                    formatted_time: gr.Textbox(visible=False)
                }
            elif source == "Webcam":
                if is_stream:
                    return {
                        conv_layer: gr.Slider(visible=False),
                        video_stream: gr.Checkbox(visible=True),
                        output_map: gr.Slider(visible=False),
                        input_im: gr.Image(type='pil',source="webcam",label="Input Image",
                                           streaming=True,visible=True,interactive=True),
                        output_box_im: gr.Image(visible=True),
                        output_conv_im: gr.Image(visible=False),
                        output_grad_im: gr.Image(visible=False),
                        input_vid: gr.Video(visible=False),
                        output_box_vid: gr.Video(visible=False),
                        norm: gr.Checkbox(visible=False),
                        labels: gr.Textbox(visible=False),
                        formatted_time: gr.Textbox(visible=False)
                    }
                elif not is_stream:
                    return {
                        conv_layer: gr.Slider(visible=False),
                        video_stream: gr.Checkbox(visible=True, value=False),
                        output_map: gr.Slider(visible=False),
                        input_im: gr.Image(visible=False,streaming=False),
                        output_box_im: gr.Image(visible=False),
                        output_conv_im: gr.Image(visible=False),
                        output_grad_im: gr.Image(visible=False),
                        input_vid: gr.Video(label="Input Video",source="webcam",
                                            show_share_button=True,interactive=True,visible=True),
                        output_box_vid: gr.Video(label="Output Video",show_share_button=True,visible=True),
                        norm: gr.Checkbox(visible=False),
                        labels: gr.Textbox(visible=False),
                        formatted_time: gr.Textbox(visible=False)
                    }
                
    def change_conv_layer(layer):
        """
        Changes the shown convolutional output layer based on gradio slider

        Args:
            layer (int): The layer to show

        Returns:
            str: The file path of the output image
        """
        return "outputs\\runs\\detect\\exp\\layers\\layer" + str(int(int(layer) - 1)) + '.jpg'
    
    def change_output_num(number):
        return "outputs\\runs\\detect\\exp\\smoothGrad" + str(int(int(number) -1)) + '.jpg'
    
    # List of gradio components that change during method "change_file_type"
    change_comp_list = [conv_layer, video_stream, output_map, 
                        input_im, output_box_im, output_conv_im, output_grad_im,
                        input_vid, output_box_vid, norm, labels, formatted_time]
    # List of gradio components that are input into the run_all method (when start button is clicked)
    run_inputs = [file_type, input_im, input_vid, source_type, 
                  inf_size, obj_conf_thr, iou_thr, conv_layer, 
                  agnostic_nms, output_map, video_stream, norm]
    # List of gradio components that are output from the run_all method (when start button is clicked)
    run_outputs = [output_box_im, output_conv_im, output_grad_im, labels, formatted_time, output_box_vid]
    
    # When these settings are changed, the change_file_type method is called
    file_type.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=change_comp_list)
    source_type.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=change_comp_list)
    video_stream.input(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=change_comp_list)
    # When start button is clicked, the run_all method is called
    start_but.click(run_all, inputs=run_inputs, outputs=run_outputs)
    # When video is uploaded, the correct_video method is called
    input_vid.upload(correct_video, inputs=[input_vid], outputs=[input_vid])
    # When the convolutional layer setting is changed, the change_conv_layer method is called
    conv_layer.input(change_conv_layer, conv_layer, output_conv_im)
    # When the stream setting is true, run the stream
    input_im.stream(run_all, inputs=run_inputs, outputs=run_outputs)
    # When the gradient number is changed, the change_output_num method is called
    output_map.input(change_output_num, output_map, output_grad_im)
    # When the demo is first started, run the change_file_type method to ensure default settings
    demo.load(change_file_type, show_progress=True, inputs=[file_type, source_type, video_stream], outputs=change_comp_list)

if __name__== "__main__" :
    # If True, it launches Gradio interface
    # If False, it runs without the interface
    if True:
        # demo.queue().launch(share=True)
        demo.queue().launch()
    else:
        # run_image("inference\\images\\bus.jpg","Computer",640,0.45,0.25,1,True)
        run_video("0", "Webcam", 640, 0.25, 0.45, True, True)