Spaces:
Build error
Build error
File size: 10,853 Bytes
93f4bab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import logging
import os
import random
import shutil
import sys
import matplotlib
import numpy as np
import torch.distributed as dist
import torch.utils.data
from pytorch_lightning.loggers import TensorBoardLogger
from torch import nn
import utils
from utils.hparams import hparams, set_hparams
from utils.pl_utils import LatestModelCheckpoint, BaseTrainer, data_loader, DDP
matplotlib.use('Agg')
torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
class BaseTask(nn.Module):
'''
Base class for training tasks.
1. *load_ckpt*:
load checkpoint;
2. *training_step*:
record and log the loss;
3. *optimizer_step*:
run backwards step;
4. *start*:
load training configs, backup code, log to tensorboard, start training;
5. *configure_ddp* and *init_ddp_connection*:
start parallel training.
Subclasses should define:
1. *build_model*, *build_optimizer*, *build_scheduler*:
how to build the model, the optimizer and the training scheduler;
2. *_training_step*:
one training step of the model;
3. *validation_end* and *_validation_end*:
postprocess the validation output.
'''
def __init__(self, *args, **kwargs):
# dataset configs
super(BaseTask, self).__init__(*args, **kwargs)
self.current_epoch = 0
self.global_step = 0
self.loaded_optimizer_states_dict = {}
self.trainer = None
self.logger = None
self.on_gpu = False
self.use_dp = False
self.use_ddp = False
self.example_input_array = None
self.max_tokens = hparams['max_tokens']
self.max_sentences = hparams['max_sentences']
self.max_eval_tokens = hparams['max_eval_tokens']
if self.max_eval_tokens == -1:
hparams['max_eval_tokens'] = self.max_eval_tokens = self.max_tokens
self.max_eval_sentences = hparams['max_eval_sentences']
if self.max_eval_sentences == -1:
hparams['max_eval_sentences'] = self.max_eval_sentences = self.max_sentences
self.model = None
self.training_losses_meter = None
###########
# Training, validation and testing
###########
def build_model(self):
raise NotImplementedError
def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True):
# This function is updated on 2021.12.13
if current_model_name is None:
current_model_name = model_name
utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict)
def on_epoch_start(self):
self.training_losses_meter = {'total_loss': utils.AvgrageMeter()}
def _training_step(self, sample, batch_idx, optimizer_idx):
"""
:param sample:
:param batch_idx:
:return: total loss: torch.Tensor, loss_log: dict
"""
raise NotImplementedError
def training_step(self, sample, batch_idx, optimizer_idx=-1):
loss_ret = self._training_step(sample, batch_idx, optimizer_idx)
self.opt_idx = optimizer_idx
if loss_ret is None:
return {'loss': None}
total_loss, log_outputs = loss_ret
log_outputs = utils.tensors_to_scalars(log_outputs)
for k, v in log_outputs.items():
if k not in self.training_losses_meter:
self.training_losses_meter[k] = utils.AvgrageMeter()
if not np.isnan(v):
self.training_losses_meter[k].update(v)
self.training_losses_meter['total_loss'].update(total_loss.item())
try:
log_outputs['lr'] = self.scheduler.get_lr()
if isinstance(log_outputs['lr'], list):
log_outputs['lr'] = log_outputs['lr'][0]
except:
pass
# log_outputs['all_loss'] = total_loss.item()
progress_bar_log = log_outputs
tb_log = {f'tr/{k}': v for k, v in log_outputs.items()}
return {
'loss': total_loss,
'progress_bar': progress_bar_log,
'log': tb_log
}
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx):
optimizer.step()
optimizer.zero_grad()
if self.scheduler is not None:
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])
def on_epoch_end(self):
loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()}
print(f"\n==============\n "
f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}"
f"\n==============\n")
def validation_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return: output: dict
"""
raise NotImplementedError
def _validation_end(self, outputs):
"""
:param outputs:
:return: loss_output: dict
"""
raise NotImplementedError
def validation_end(self, outputs):
loss_output = self._validation_end(outputs)
print(f"\n==============\n "
f"valid results: {loss_output}"
f"\n==============\n")
return {
'log': {f'val/{k}': v for k, v in loss_output.items()},
'val_loss': loss_output['total_loss']
}
def build_scheduler(self, optimizer):
raise NotImplementedError
def build_optimizer(self, model):
raise NotImplementedError
def configure_optimizers(self):
optm = self.build_optimizer(self.model)
self.scheduler = self.build_scheduler(optm)
return [optm]
def test_start(self):
pass
def test_step(self, sample, batch_idx):
return self.validation_step(sample, batch_idx)
def test_end(self, outputs):
return self.validation_end(outputs)
###########
# Running configuration
###########
@classmethod
def start(cls):
set_hparams()
os.environ['MASTER_PORT'] = str(random.randint(15000, 30000))
random.seed(hparams['seed'])
np.random.seed(hparams['seed'])
task = cls()
work_dir = hparams['work_dir']
trainer = BaseTrainer(checkpoint_callback=LatestModelCheckpoint(
filepath=work_dir,
verbose=True,
monitor='val_loss',
mode='min',
num_ckpt_keep=hparams['num_ckpt_keep'],
save_best=hparams['save_best'],
period=1 if hparams['save_ckpt'] else 100000
),
logger=TensorBoardLogger(
save_dir=work_dir,
name='lightning_logs',
version='lastest'
),
gradient_clip_val=hparams['clip_grad_norm'],
val_check_interval=hparams['val_check_interval'],
row_log_interval=hparams['log_interval'],
max_updates=hparams['max_updates'],
num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams[
'validate'] else 10000,
accumulate_grad_batches=hparams['accumulate_grad_batches'])
if not hparams['infer']: # train
# Copy spk_map.json to work dir
spk_map = os.path.join(work_dir, 'spk_map.json')
spk_map_orig = os.path.join(hparams['binary_data_dir'], 'spk_map.json')
if not os.path.exists(spk_map) and os.path.exists(spk_map_orig):
shutil.copy(spk_map_orig, spk_map)
print(f"| Copied spk map to {spk_map}.")
trainer.checkpoint_callback.task = task
trainer.fit(task)
else:
trainer.test(task)
@staticmethod
def configure_ddp(model, device_ids):
model = DDP(
model,
device_ids=device_ids,
find_unused_parameters=True
)
if dist.get_rank() != 0 and not hparams['debug']:
sys.stdout = open(os.devnull, "w")
sys.stderr = open(os.devnull, "w")
random.seed(hparams['seed'])
np.random.seed(hparams['seed'])
return model
@staticmethod
def training_end(self, *args, **kwargs):
return None
def init_ddp_connection(self, proc_rank, world_size):
set_hparams(print_hparams=False)
# guarantees unique ports across jobs from same grid search
default_port = 12910
# if user gave a port number, use that one instead
try:
default_port = os.environ['MASTER_PORT']
except Exception:
os.environ['MASTER_PORT'] = str(default_port)
# figure out the root node addr
root_node = '127.0.0.2'
root_node = self.trainer.resolve_root_node_address(root_node)
os.environ['MASTER_ADDR'] = root_node
dist.init_process_group('nccl', rank=proc_rank, world_size=world_size)
@data_loader
def train_dataloader(self):
return None
@data_loader
def test_dataloader(self):
return None
@data_loader
def val_dataloader(self):
return None
def on_load_checkpoint(self, checkpoint):
pass
def on_save_checkpoint(self, checkpoint):
pass
def on_sanity_check_start(self):
pass
def on_train_start(self):
pass
def on_train_end(self):
pass
def on_batch_start(self, batch):
pass
def on_batch_end(self):
pass
def on_pre_performance_check(self):
pass
def on_post_performance_check(self):
pass
def on_before_zero_grad(self, optimizer):
pass
def on_after_backward(self):
pass
@staticmethod
def backward(loss, optimizer):
loss.backward()
def grad_norm(self, norm_type):
results = {}
total_norm = 0
for name, p in self.named_parameters():
if p.requires_grad:
try:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm ** norm_type
norm = param_norm ** (1 / norm_type)
grad = round(norm.data.cpu().numpy().flatten()[0], 3)
results['grad_{}_norm_{}'.format(norm_type, name)] = grad
except Exception:
# this param had no grad
pass
total_norm = total_norm ** (1. / norm_type)
grad = round(total_norm.data.cpu().numpy().flatten()[0], 3)
results['grad_{}_norm_total'.format(norm_type)] = grad
return results
|