File size: 9,029 Bytes
93f4bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import json
import logging
import os
import random
from copy import deepcopy

import numpy as np
import yaml
from resemblyzer import VoiceEncoder
from tqdm import tqdm

from infer_tools.f0_static import static_f0_time
from modules.vocoders.nsf_hifigan import NsfHifiGAN
from preprocessing.hubertinfer import HubertEncoder
from preprocessing.process_pipeline import File2Batch
from preprocessing.process_pipeline import get_pitch_parselmouth, get_pitch_crepe
from utils.hparams import hparams
from utils.hparams import set_hparams
from utils.indexed_datasets import IndexedDatasetBuilder

os.environ["OMP_NUM_THREADS"] = "1"
BASE_ITEM_ATTRIBUTES = ['wav_fn', 'spk_id']


class SvcBinarizer:
    '''
        Base class for data processing.
        1. *process* and *process_data_split*:
            process entire data, generate the train-test split (support parallel processing);
        2. *process_item*:
            process singe piece of data;
        3. *get_pitch*:
            infer the pitch using some algorithm;
        4. *get_align*:
            get the alignment using 'mel2ph' format (see https://arxiv.org/abs/1905.09263).
        5. phoneme encoder, voice encoder, etc.

        Subclasses should define:
        1. *load_metadata*:
            how to read multiple datasets from files;
        2. *train_item_names*, *valid_item_names*, *test_item_names*:
            how to split the dataset;
        3. load_ph_set:
            the phoneme set.
    '''

    def __init__(self, data_dir=None, item_attributes=None):
        self.spk_map = None
        self.vocoder = NsfHifiGAN()
        self.phone_encoder = HubertEncoder(pt_path=hparams['hubert_path'])
        if item_attributes is None:
            item_attributes = BASE_ITEM_ATTRIBUTES
        if data_dir is None:
            data_dir = hparams['raw_data_dir']
        if 'speakers' not in hparams:
            speakers = hparams['datasets']
            hparams['speakers'] = hparams['datasets']
        else:
            speakers = hparams['speakers']
        assert isinstance(speakers, list), 'Speakers must be a list'
        assert len(speakers) == len(set(speakers)), 'Speakers cannot contain duplicate names'

        self.raw_data_dirs = data_dir if isinstance(data_dir, list) else [data_dir]
        assert len(speakers) == len(self.raw_data_dirs), \
            'Number of raw data dirs must equal number of speaker names!'
        self.speakers = speakers
        self.binarization_args = hparams['binarization_args']

        self.items = {}
        # every item in self.items has some attributes
        self.item_attributes = item_attributes

        # load each dataset
        for ds_id, data_dir in enumerate(self.raw_data_dirs):
            self.load_meta_data(data_dir, ds_id)
            if ds_id == 0:
                # check program correctness
                assert all([attr in self.item_attributes for attr in list(self.items.values())[0].keys()])
        self.item_names = sorted(list(self.items.keys()))

        if self.binarization_args['shuffle']:
            random.seed(hparams['seed'])
            random.shuffle(self.item_names)

        # set default get_pitch algorithm
        if hparams['use_crepe']:
            self.get_pitch_algorithm = get_pitch_crepe
        else:
            self.get_pitch_algorithm = get_pitch_parselmouth
        print('spkers: ', set(self.speakers))
        self._train_item_names, self._test_item_names = self.split_train_test_set(self.item_names)

    @staticmethod
    def split_train_test_set(item_names):
        auto_test = item_names[-5:]
        item_names = set(deepcopy(item_names))
        if hparams['choose_test_manually']:
            prefixes = set([str(pr) for pr in hparams['test_prefixes']])
            test_item_names = set()
            # Add prefixes that specified speaker index and matches exactly item name to test set
            for prefix in deepcopy(prefixes):
                if prefix in item_names:
                    test_item_names.add(prefix)
                    prefixes.remove(prefix)
            # Add prefixes that exactly matches item name without speaker id to test set
            for prefix in deepcopy(prefixes):
                for name in item_names:
                    if name.split(':')[-1] == prefix:
                        test_item_names.add(name)
                        prefixes.remove(prefix)
            # Add names with one of the remaining prefixes to test set
            for prefix in deepcopy(prefixes):
                for name in item_names:
                    if name.startswith(prefix):
                        test_item_names.add(name)
                        prefixes.remove(prefix)
            for prefix in prefixes:
                for name in item_names:
                    if name.split(':')[-1].startswith(prefix):
                        test_item_names.add(name)
            test_item_names = sorted(list(test_item_names))
        else:
            test_item_names = auto_test
        train_item_names = [x for x in item_names if x not in set(test_item_names)]
        logging.info("train {}".format(len(train_item_names)))
        logging.info("test {}".format(len(test_item_names)))
        return train_item_names, test_item_names

    @property
    def train_item_names(self):
        return self._train_item_names

    @property
    def valid_item_names(self):
        return self._test_item_names

    @property
    def test_item_names(self):
        return self._test_item_names

    def load_meta_data(self, raw_data_dir, ds_id):
        self.items.update(File2Batch.file2temporary_dict(raw_data_dir, ds_id))

    @staticmethod
    def build_spk_map():
        spk_map = {x: i for i, x in enumerate(hparams['speakers'])}
        assert len(spk_map) <= hparams['num_spk'], 'Actual number of speakers should be smaller than num_spk!'
        return spk_map

    def item_name2spk_id(self, item_name):
        return self.spk_map[self.items[item_name]['spk_id']]

    def meta_data_iterator(self, prefix):
        if prefix == 'valid':
            item_names = self.valid_item_names
        elif prefix == 'test':
            item_names = self.test_item_names
        else:
            item_names = self.train_item_names
        for item_name in item_names:
            meta_data = self.items[item_name]
            yield item_name, meta_data

    def process(self):
        os.makedirs(hparams['binary_data_dir'], exist_ok=True)
        self.spk_map = self.build_spk_map()
        print("| spk_map: ", self.spk_map)
        spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
        json.dump(self.spk_map, open(spk_map_fn, 'w', encoding='utf-8'))
        self.process_data_split('valid')
        self.process_data_split('test')
        self.process_data_split('train')

    def process_data_split(self, prefix):
        data_dir = hparams['binary_data_dir']
        args = []
        builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
        lengths = []
        total_sec = 0
        if self.binarization_args['with_spk_embed']:
            voice_encoder = VoiceEncoder().cuda()
        for item_name, meta_data in self.meta_data_iterator(prefix):
            args.append([item_name, meta_data, self.binarization_args])
        spec_min = []
        spec_max = []
        f0_dict = {}
        # code for single cpu processing
        for i in tqdm(reversed(range(len(args))), total=len(args)):
            a = args[i]
            item = self.process_item(*a)
            if item is None:
                continue
            item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
                if self.binarization_args['with_spk_embed'] else None
            spec_min.append(item['spec_min'])
            spec_max.append(item['spec_max'])
            f0_dict[item['wav_fn']] = item['f0']
            builder.add_item(item)
            lengths.append(item['len'])
            total_sec += item['sec']
        if prefix == 'train':
            spec_max = np.max(spec_max, 0)
            spec_min = np.min(spec_min, 0)
            pitch_time = static_f0_time(f0_dict)
            with open(hparams['config_path'], encoding='utf-8') as f:
                _hparams = yaml.safe_load(f)
                _hparams['spec_max'] = spec_max.tolist()
                _hparams['spec_min'] = spec_min.tolist()
                if self.speakers == 1:
                    _hparams['f0_static'] = json.dumps(pitch_time)
            with open(hparams['config_path'], 'w', encoding='utf-8') as f:
                yaml.safe_dump(_hparams, f)
        builder.finalize()
        np.save(f'{data_dir}/{prefix}_lengths.npy', lengths)
        print(f"| {prefix} total duration: {total_sec:.3f}s")

    def process_item(self, item_name, meta_data, binarization_args):
        from preprocessing.process_pipeline import File2Batch
        return File2Batch.temporary_dict2processed_input(item_name, meta_data, self.phone_encoder)


if __name__ == "__main__":
    set_hparams()
    SvcBinarizer().process()