File size: 6,704 Bytes
93f4bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import librosa
import torch
import torchaudio


class Slicer:
    def __init__(self,
                 sr: int,
                 threshold: float = -40.,
                 min_length: int = 5000,
                 min_interval: int = 300,
                 hop_size: int = 20,
                 max_sil_kept: int = 5000):
        if not min_length >= min_interval >= hop_size:
            raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
        if not max_sil_kept >= hop_size:
            raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]

    # @timeit
    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = librosa.to_mono(waveform)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
        rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start: i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        # Apply and return slices.
        if len(sil_tags) == 0:
            return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
        else:
            chunks = []
            # 第一段静音并非从头开始,补上有声片段
            if sil_tags[0][0]:
                chunks.append(
                    {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
            for i in range(0, len(sil_tags)):
                # 标识有声片段(跳过第一段)
                if i:
                    chunks.append({"slice": False,
                                   "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
                # 标识所有静音片段
                chunks.append({"slice": True,
                               "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
            # 最后一段静音并非结尾,补上结尾片段
            if sil_tags[-1][1] * self.hop_size < len(waveform):
                chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
            chunk_dict = {}
            for i in range(len(chunks)):
                chunk_dict[str(i)] = chunks[i]
            return chunk_dict


def cut(audio_path, db_thresh=-30, min_len=5000):
    audio, sr = librosa.load(audio_path, sr=None)
    slicer = Slicer(
        sr=sr,
        threshold=db_thresh,
        min_length=min_len
    )
    chunks = slicer.slice(audio)
    return chunks


def chunks2audio(audio_path, chunks):
    chunks = dict(chunks)
    audio, sr = torchaudio.load(audio_path)
    if len(audio.shape) == 2 and audio.shape[1] >= 2:
        audio = torch.mean(audio, dim=0).unsqueeze(0)
    audio = audio.cpu().numpy()[0]
    result = []
    for k, v in chunks.items():
        tag = v["split_time"].split(",")
        if tag[0] != tag[1]:
            result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
    return result, sr