File size: 2,470 Bytes
0e66889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049301
 
 
 
 
 
 
 
 
 
 
0e66889
 
4049301
0e66889
4049301
0e66889
 
 
 
 
4049301
a281d68
 
 
 
 
 
0e66889
4049301
0e66889
4049301
0e66889
 
 
4049301
0e66889
4049301
 
0e66889
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


import os
os.system("pip install xtcocotools>=1.12")
os.system("pip install 'mmengine>=0.6.0'")
os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
os.system("pip install 'mmpose'")

import PIL
import cv2
import mmpose
import numpy as np

import torch
from mmpose.apis import MMPoseInferencer
import gradio as gr

import warnings

warnings.filterwarnings("ignore")

mmpose_model_list = ["human", "hand", "face", "animal", "wholebody",
                     "vitpose", "vitpose-s", "vitpose-b", "vitpose-l", "vitpose-h"]

def save_image(img, img_path):
    # Convert PIL image to OpenCV image
    img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
    # Save OpenCV image
    cv2.imwrite(img_path, img)

# def download_test_image():
#     # Images
#     torch.hub.download_url_to_file(
#         'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
#         'bus.jpg')
#     torch.hub.download_url_to_file(
#         'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
#         'dogs.jpg')
#     torch.hub.download_url_to_file(
#         'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
#         'zidane.jpg')


def predict_pose(img, model_name):
    img_path = "input_img.jpg"
    out_dir = "./output";
    save_image(img, img_path)
    device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
    inferencer = MMPoseInferencer(model_name, device=device)
    result_generator = inferencer(img_path, show=False, out_dir=out_dir)
    result = next(result_generator)
    print(result)
    save_dir = './output/visualizations/'
    if os.path.exists(save_dir):
        out_img_path = save_dir + img_path
        print("out_img_path: ", out_img_path)
    else:
        out_img_path = img_path
    out_img = PIL.Image.open(out_img_path)
    return (out_img, result)

# download_test_image()
input_image = gr.inputs.Image(type='pil', label="Original Image")
model_name = gr.inputs.Dropdown(choices=[m for m in mmpose_model_list], label='Model')
output_image = gr.outputs.Image(type="pil", label="Output Image")
output_text = gr.outputs.Textbox(label="Output Text")

title = "MMPose detection for ShopByShape"
iface = gr.Interface(fn=predict_pose, inputs=[input_image, model_name], outputs=[output_image, output_text], title=title)
iface.launch()