Spaces:
Runtime error
Runtime error
File size: 2,470 Bytes
0e66889 4049301 0e66889 4049301 0e66889 4049301 0e66889 4049301 a281d68 0e66889 4049301 0e66889 4049301 0e66889 4049301 0e66889 4049301 0e66889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
os.system("pip install xtcocotools>=1.12")
os.system("pip install 'mmengine>=0.6.0'")
os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
os.system("pip install 'mmpose'")
import PIL
import cv2
import mmpose
import numpy as np
import torch
from mmpose.apis import MMPoseInferencer
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
mmpose_model_list = ["human", "hand", "face", "animal", "wholebody",
"vitpose", "vitpose-s", "vitpose-b", "vitpose-l", "vitpose-h"]
def save_image(img, img_path):
# Convert PIL image to OpenCV image
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Save OpenCV image
cv2.imwrite(img_path, img)
# def download_test_image():
# # Images
# torch.hub.download_url_to_file(
# 'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
# 'bus.jpg')
# torch.hub.download_url_to_file(
# 'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
# 'dogs.jpg')
# torch.hub.download_url_to_file(
# 'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
# 'zidane.jpg')
def predict_pose(img, model_name):
img_path = "input_img.jpg"
out_dir = "./output";
save_image(img, img_path)
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
inferencer = MMPoseInferencer(model_name, device=device)
result_generator = inferencer(img_path, show=False, out_dir=out_dir)
result = next(result_generator)
print(result)
save_dir = './output/visualizations/'
if os.path.exists(save_dir):
out_img_path = save_dir + img_path
print("out_img_path: ", out_img_path)
else:
out_img_path = img_path
out_img = PIL.Image.open(out_img_path)
return (out_img, result)
# download_test_image()
input_image = gr.inputs.Image(type='pil', label="Original Image")
model_name = gr.inputs.Dropdown(choices=[m for m in mmpose_model_list], label='Model')
output_image = gr.outputs.Image(type="pil", label="Output Image")
output_text = gr.outputs.Textbox(label="Output Text")
title = "MMPose detection for ShopByShape"
iface = gr.Interface(fn=predict_pose, inputs=[input_image, model_name], outputs=[output_image, output_text], title=title)
iface.launch()
|