Spaces:
Running
Running
File size: 18,863 Bytes
af31cad d80cfe4 b55e829 cdba494 af31cad d80cfe4 af31cad b55e829 cdba494 d80cfe4 af31cad b55e829 13e03a4 b55e829 cdba494 af31cad 13e03a4 b55e829 cdba494 13e03a4 a53c3cd cdba494 a53c3cd cdba494 a67e589 a53c3cd a67e589 cdba494 a53c3cd a67e589 a53c3cd a67e589 cdba494 92617e9 cdba494 b55e829 a67e589 b55e829 a67e589 b55e829 a67e589 b55e829 d80cfe4 af31cad cdba494 b55e829 cdba494 b55e829 cdba494 25edba4 cdba494 b55e829 cdba494 b55e829 25edba4 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 b55e829 cdba494 25edba4 cdba494 b55e829 cdba494 3a09799 cdba494 b55e829 cdba494 3a09799 cdba494 b55e829 cdba494 af31cad b55e829 d80cfe4 b55e829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import gradio as gr
import asyncio
import os
from typing import Dict, Any, List, Optional
from dotenv import load_dotenv
from minion.main import LocalPythonEnv
from minion.main.rpyc_python_env import RpycPythonEnv
from minion.main.brain import Brain
from minion.providers import create_llm_provider
# Import our MCP integration
from mcp_integration import MCPBrainClient, create_final_answer_tool, BrainTool, add_filesystem_tool
# Load .env file
load_dotenv()
class LLMConfig:
def __init__(self, api_type: str, api_key: str, base_url: str, api_version: str,
model: str, temperature: float = 0.7, max_tokens: int = 4000,
vision_enabled: bool = False):
self.api_type = api_type
self.api_key = api_key
self.base_url = base_url
self.api_version = api_version
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self.vision_enabled = vision_enabled
def get_preset_configs():
"""Get preset configurations"""
presets = {
"gpt-4o": LLMConfig(
api_type=os.getenv("GPT_4O_API_TYPE", "azure"),
api_key=os.getenv("GPT_4O_API_KEY", ""),
base_url=os.getenv("GPT_4O_BASE_URL", ""),
api_version=os.getenv("GPT_4O_API_VERSION", "2024-06-01"),
model=os.getenv("GPT_4O_MODEL", "gpt-4o"),
temperature=float(os.getenv("GPT_4O_TEMPERATURE", "0")),
max_tokens=int(os.getenv("GPT_4O_MAX_TOKENS", "4000"))
),
"gpt-4o-mini": LLMConfig(
api_type=os.getenv("GPT_4O_MINI_API_TYPE", "azure"),
api_key=os.getenv("GPT_4O_MINI_API_KEY", ""),
base_url=os.getenv("GPT_4O_MINI_BASE_URL", ""),
api_version=os.getenv("GPT_4O_MINI_API_VERSION", "2024-06-01"),
model=os.getenv("GPT_4O_MINI_MODEL", "gpt-4o-mini"),
temperature=float(os.getenv("GPT_4O_MINI_TEMPERATURE", "0.1")),
max_tokens=int(os.getenv("GPT_4O_MINI_MAX_TOKENS", "4000"))
),
"gpt-4.1": LLMConfig(
api_type=os.getenv("GPT_41_API_TYPE", "azure"),
api_key=os.getenv("GPT_41_API_KEY", ""),
base_url=os.getenv("GPT_41_BASE_URL", ""),
api_version=os.getenv("GPT_41_API_VERSION", "2025-03-01-preview"),
model=os.getenv("GPT_41_MODEL", "gpt-4.1"),
temperature=float(os.getenv("GPT_41_TEMPERATURE", "0.7")),
max_tokens=int(os.getenv("GPT_41_MAX_TOKENS", "4000"))
),
"o4-mini": LLMConfig(
api_type=os.getenv("O4_MINI_API_TYPE", "azure"),
api_key=os.getenv("O4_MINI_API_KEY", ""),
base_url=os.getenv("O4_MINI_BASE_URL", ""),
api_version=os.getenv("O4_MINI_API_VERSION", "2025-03-01-preview"),
model=os.getenv("O4_MINI_MODEL", "o4-mini"),
temperature=float(os.getenv("O4_MINI_TEMPERATURE", "0.7")),
max_tokens=int(os.getenv("O4_MINI_MAX_TOKENS", "4000"))
)
}
return presets
def get_default_config():
"""Get default configuration"""
return LLMConfig(
api_type=os.getenv("DEFAULT_API_TYPE", "azure"),
api_key=os.getenv("DEFAULT_API_KEY", ""),
base_url=os.getenv("DEFAULT_BASE_URL", ""),
api_version=os.getenv("DEFAULT_API_VERSION", "2024-06-01"),
model=os.getenv("DEFAULT_MODEL", "gpt-4o"),
temperature=float(os.getenv("DEFAULT_TEMPERATURE", "0.7")),
max_tokens=int(os.getenv("DEFAULT_MAX_TOKENS", "4000"))
)
def get_available_routes():
"""Get available route options for current minion system"""
return [
"", # Auto route selection (empty for automatic)
"raw", # Raw LLM output without processing
"native", # Native minion processing
"cot", # Chain of Thought reasoning
"dcot", # Dynamic Chain of Thought
"plan", # Planning-based approach
"python" # Python code execution
]
def create_custom_llm_config(api_type: str, api_key: str, base_url: str,
api_version: str, model: str, temperature: float,
max_tokens: int) -> Dict[str, Any]:
"""Create custom LLM configuration"""
return {
'api_type': api_type,
'api_key': api_key,
'base_url': base_url,
'api_version': api_version,
'model': model,
'temperature': temperature,
'max_tokens': max_tokens,
'vision_enabled': False
}
def build_brain_with_config(llm_config_dict: Dict[str, Any]):
"""Build brain with specified configuration"""
# Create a config object similar to LLMConfig
class Config:
def __init__(self, config_dict):
for key, value in config_dict.items():
setattr(self, key, value)
config_obj = Config(llm_config_dict)
llm = create_llm_provider(config_obj)
python_env = LocalPythonEnv(verbose=False)
brain = Brain(
python_env=python_env,
llm=llm,
)
return brain
# Global MCP client instance
mcp_client: Optional[MCPBrainClient] = None
async def setup_mcp_tools():
"""Setup MCP tools and connections"""
global mcp_client
if mcp_client is None:
mcp_client = MCPBrainClient()
await mcp_client.__aenter__()
# Add filesystem tool (always try to add this)
try:
await add_filesystem_tool(mcp_client)
print("✓ Added filesystem tool")
except Exception as e:
print(f"⚠ Failed to add filesystem tool: {e}")
# Add MCP servers from environment variables
# Example: SSE server
sse_url = os.getenv("MCP_SSE_URL")
if sse_url:
try:
await mcp_client.add_mcp_server("sse", url=sse_url)
print(f"✓ Added SSE server: {sse_url}")
except Exception as e:
print(f"⚠ Failed to add SSE server: {e}")
# Example: Stdio server
stdio_command = os.getenv("MCP_STDIO_COMMAND")
if stdio_command:
try:
await mcp_client.add_mcp_server("stdio", command=stdio_command)
print(f"✓ Added stdio server: {stdio_command}")
except Exception as e:
print(f"⚠ Failed to add stdio server: {e}")
return mcp_client
async def get_available_tools() -> List[BrainTool]:
"""Get all available tools including MCP tools and final answer tool"""
try:
mcp_client = await setup_mcp_tools()
mcp_tools = mcp_client.get_tools_for_brain()
except Exception as e:
print(f"Warning: Failed to setup MCP tools: {e}")
mcp_tools = []
# Always add final answer tool
final_answer_tool = create_final_answer_tool()
return mcp_tools #+ [final_answer_tool]
# Get preset configurations and default configuration
preset_configs = get_preset_configs()
default_config = get_default_config()
available_routes = get_available_routes()
async def minion_respond_async(query: str,
preset_model: str = "gpt-4o",
api_type: str = None,
api_key: str = None,
base_url: str = None,
api_version: str = None,
model: str = None,
temperature: float = None,
max_tokens: int = None,
route: str = "",
query_type: str = "calculate",
check_enabled: bool = False,
use_tools: bool = True):
"""Respond to query using specified configuration with optional MCP tools"""
# Get default config for None values
if api_type is None:
api_type = default_config.api_type
if api_key is None:
api_key = default_config.api_key
if base_url is None:
base_url = default_config.base_url
if api_version is None:
api_version = default_config.api_version
if model is None:
model = default_config.model
if temperature is None:
temperature = default_config.temperature
if max_tokens is None:
max_tokens = default_config.max_tokens
# Always use the current UI values, regardless of preset selection
# Preset is only used for initializing UI fields, not for actual execution
llm_config_dict = create_custom_llm_config(
api_type, api_key, base_url, api_version, model, temperature, max_tokens
)
if preset_model != "Custom":
print(f"🔧 Using preset '{preset_model}' base with UI overrides:")
print(f" - API Type: {api_type}")
print(f" - Model: {model}")
print(f" - Base URL: {base_url}")
print(f" - API Version: {api_version}")
print(f" - Temperature: {temperature}")
print(f" - Max tokens: {max_tokens}")
else:
print(f"🔧 Using custom configuration:")
print(f" - API Type: {api_type}")
print(f" - Model: {model}")
print(f" - Base URL: {base_url}")
print(f" - API Version: {api_version}")
print(f" - Temperature: {temperature}")
print(f" - Max tokens: {max_tokens}")
# Always rebuild brain with current UI configuration
print(f"🧠 Building brain with final config:")
print(f" - Final API type: {llm_config_dict['api_type']}")
print(f" - Final model: {llm_config_dict['model']}")
print(f" - Final temperature: {llm_config_dict['temperature']}")
print(f" - Final max_tokens: {llm_config_dict['max_tokens']}")
brain = build_brain_with_config(llm_config_dict)
# Handle empty route selection for auto route
route_param = route if route else None
# Build kwargs for brain.step
kwargs = {'query': query, 'route': route_param, 'check': check_enabled}
# Add query_type to kwargs if route is python
if route == "python" and query_type:
kwargs['query_type'] = query_type
# Add tools if enabled
if use_tools:
try:
tools = await get_available_tools()
kwargs['tools'] = tools
print(f"🔧 Using {len(tools)} tools: {[tool.name for tool in tools]}")
except Exception as e:
print(f"⚠️ Warning: Failed to get tools: {e}")
print(f"🚀 Executing brain.step with route='{route_param}', check={check_enabled}")
obs, score, *_ = await brain.step(**kwargs)
return obs
def minion_respond(query: str, preset_model: str, api_type: str, api_key: str,
base_url: str, api_version: str, model: str, temperature: float,
max_tokens: int, route: str, query_type: str, check_enabled: bool,
use_tools: bool):
"""Gradio sync interface, automatically schedules async"""
return asyncio.run(minion_respond_async(
query, preset_model, api_type, api_key, base_url,
api_version, model, temperature, max_tokens, route, query_type, check_enabled,
use_tools
))
def update_fields(preset_model: str):
"""Update other fields when preset model is selected"""
if preset_model == "Custom":
# Return default values, let user configure themselves
return (
default_config.api_type,
default_config.api_key, # Show real API key instead of empty
default_config.base_url,
default_config.api_version,
default_config.model,
default_config.temperature,
default_config.max_tokens
)
else:
config_obj = preset_configs.get(preset_model, default_config)
# Ensure API type is from valid choices
api_type = config_obj.api_type if config_obj.api_type in ["azure", "openai", "groq", "ollama", "anthropic", "gemini"] else "azure"
return (
api_type,
config_obj.api_key, # Show real API key from preset config
config_obj.base_url,
config_obj.api_version,
config_obj.model,
config_obj.temperature,
config_obj.max_tokens
)
def update_query_type_visibility(route: str):
"""Show query_type dropdown only when route is python"""
return gr.update(visible=(route == "python"))
async def get_tool_status():
"""Get status of available tools"""
try:
tools = await get_available_tools()
return f"Available tools: {', '.join([tool.name for tool in tools])}"
except Exception as e:
return f"Error getting tools: {str(e)}"
def check_tools():
"""Sync wrapper for tool status check"""
return asyncio.run(get_tool_status())
# Create Gradio interface
with gr.Blocks(title="Minion Brain Chat with MCP Tools") as demo:
gr.Markdown("# Minion Brain Chat with MCP Tools\nIntelligent Q&A powered by Minion1 Brain with MCP tool support")
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="Enter your question",
placeholder="Please enter your question...",
lines=3
)
submit_btn = gr.Button("Submit", variant="primary")
# Tool status
with gr.Row():
tool_status_btn = gr.Button("Check Available Tools", size="sm")
tool_status_output = gr.Textbox(
label="Tool Status",
lines=2,
interactive=False
)
# Move Answer section to left column, closer to question input
output = gr.Textbox(
label="Answer",
lines=10,
show_copy_button=True
)
with gr.Column(scale=1):
# Tool settings
use_tools_checkbox = gr.Checkbox(
label="Enable MCP Tools",
value=True,
info="Use Model Context Protocol tools"
)
# Move route selection to the front
route_dropdown = gr.Dropdown(
label="Route",
choices=available_routes,
value="",
info="empty: auto select, raw: direct LLM, native: standard, cot: chain of thought, dcot: dynamic cot, plan: planning, python: code execution"
)
# Add query_type option, visible only when route="python"
query_type_dropdown = gr.Dropdown(
label="Query Type",
choices=["calculate", "code_solution", "generate"],
value="calculate",
visible=False,
info="Type of query for python route"
)
# Add check option
check_checkbox = gr.Checkbox(
label="Enable Check",
value=False,
info="Enable output verification and validation"
)
preset_dropdown = gr.Dropdown(
label="Preset Model",
choices=["Custom"] + list(preset_configs.keys()),
value="gpt-4o",
info="Select preset configuration or custom"
)
api_type_input = gr.Dropdown(
label="API Type",
choices=["azure", "openai", "groq", "ollama", "anthropic", "gemini"],
value=default_config.api_type,
info="Select API provider type"
)
api_key_input = gr.Textbox(
label="API Key",
value=default_config.api_key, # Show real API key instead of masked value
type="password",
info="Your API key"
)
base_url_input = gr.Textbox(
label="Base URL",
value=default_config.base_url,
info="API base URL"
)
api_version_input = gr.Textbox(
label="API Version",
value=default_config.api_version,
info="API version (required for Azure)"
)
model_input = gr.Textbox(
label="Model",
value=default_config.model,
info="Model name"
)
temperature_input = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=2.0,
value=default_config.temperature,
step=0.1,
info="Control output randomness"
)
max_tokens_input = gr.Slider(
label="Max Tokens",
minimum=100,
maximum=8000,
value=default_config.max_tokens,
step=100,
info="Maximum number of tokens to generate"
)
# Update other fields when preset model changes
preset_dropdown.change(
fn=update_fields,
inputs=[preset_dropdown],
outputs=[api_type_input, api_key_input, base_url_input,
api_version_input, model_input, temperature_input, max_tokens_input]
)
# Update query_type visibility when route changes
route_dropdown.change(
fn=update_query_type_visibility,
inputs=[route_dropdown],
outputs=[query_type_dropdown]
)
# Tool status check
tool_status_btn.click(
fn=check_tools,
outputs=[tool_status_output]
)
# Submit button event
submit_btn.click(
fn=minion_respond_async,
inputs=[query_input, preset_dropdown, api_type_input, api_key_input,
base_url_input, api_version_input, model_input, temperature_input,
max_tokens_input, route_dropdown, query_type_dropdown, check_checkbox,
use_tools_checkbox],
outputs=[output]
)
# Enter key submit
query_input.submit(
fn=minion_respond_async,
inputs=[query_input, preset_dropdown, api_type_input, api_key_input,
base_url_input, api_version_input, model_input, temperature_input,
max_tokens_input, route_dropdown, query_type_dropdown, check_checkbox,
use_tools_checkbox],
outputs=[output]
)
# Cleanup function
async def cleanup_on_exit():
"""Clean up MCP client on exit"""
global mcp_client
if mcp_client:
await mcp_client.cleanup()
if __name__ == "__main__":
try:
demo.launch(mcp_server=True)
finally:
asyncio.run(cleanup_on_exit()) |