Spaces:
Running
Running
File size: 7,487 Bytes
4b47b90 2b86939 4b47b90 2b86939 4b47b90 2b86939 4b47b90 2b86939 4b47b90 2b86939 4b47b90 84b23de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import json
import os
import gradio as gr
import time
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
import os
from dotenv import load_dotenv
load_dotenv()
path_work = "."
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
embeddings = HuggingFaceInstructEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
vectordb = Chroma(
persist_directory = path_work + '/cromadb_llama2-papers',
embedding_function=embeddings)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
class KwArgsModel(BaseModel):
kwargs: Dict[str, Any] = Field(default_factory=dict)
class CustomInferenceClient(LLM, KwArgsModel):
model_name: str
inference_client: InferenceClient
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
inference_client = InferenceClient(model=model_name, token=hf_token)
super().__init__(
model_name=model_name,
hf_token=hf_token,
kwargs=kwargs,
inference_client=inference_client
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
response = ''.join(response_gen)
return response
@property
def _llm_type(self) -> str:
return "custom"
@property
def _identifying_params(self) -> dict:
return {"model_name": self.model_name}
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
model_list=[
"meta-llama/Llama-2-13b-chat-hf",
"HuggingFaceH4/zephyr-7b-alpha",
"meta-llama/Llama-2-70b-chat-hf",
"tiiuae/falcon-180B-chat"
]
qa_chain = None
def load_model(model_selected):
global qa_chain
model_name = model_selected
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
qa_chain
load_model("meta-llama/Llama-2-70b-chat-hf")
def model_select(model_selected):
load_model(model_selected)
return f"๋ชจ๋ธ {model_selected} ๋ก๋ฉ ์๋ฃ."
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
llm_response = qa_chain(message)
res_result = llm_response['result']
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
response = f"{res_result}" + "\n\n" + "[๋ต๋ณ ๊ทผ๊ฑฐ ์์ค ๋
ผ๋ฌธ (ctrl + click ํ์ธ์!)] :" + "\n" + f" \n {res_relevant_doc}"
print("response: =====> \n", response, "\n\n")
tokens = response.split('\n')
token_list = []
for idx, token in enumerate(tokens):
token_dict = {"id": idx + 1, "text": token}
token_list.append(token_dict)
response = {"data": {"token": token_list}}
response = json.dumps(response, indent=4)
response = json.loads(response)
data_dict = response.get('data', {})
token_list = data_dict.get('token', [])
partial_message = ""
for token_entry in token_list:
if token_entry:
try:
token_id = token_entry.get('id', None)
token_text = token_entry.get('text', None)
if token_text:
for char in token_text:
partial_message += char
yield partial_message
time.sleep(0.01)
else:
print(f"[[์๋]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
pass
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
continue
title = "Llama-2 ๋ชจ๋ธ ๊ด๋ จ ๋
ผ๋ฌธ Generative QA (with RAG) ์๋น์ค (Llama-2-70b ๋ชจ๋ธ ๋ฑ ํ์ฉ)"
description = """Chat history ์ ์ง ๋ณด๋ค๋ QA์ ์ถฉ์คํ๋๋ก ์ ์๋์์ผ๋ฏ๋ก Single turn์ผ๋ก ํ์ฉ ํ์ฌ ์ฃผ์ธ์. Default๋ก Llama-2 70b ๋ชจ๋ธ๋ก ์ค์ ๋์ด ์์ผ๋ GPU ์๋น์ค ํ๋ ์ด๊ณผ๋ก Error๊ฐ ๋ฐ์ํ ์ ์์ผ๋ ์ํด๋ถํ๋๋ฆฌ๋ฉฐ, ํ๋ฉด ํ๋จ์ ๋ชจ๋ธ ๋ณ๊ฒฝ/๋ก๋ฉํ์์ด ๋ค๋ฅธ ๋ชจ๋ธ๋ก ๋ณ๊ฒฝํ์ฌ ์ฌ์ฉ์ ๋ถํ๋๋ฆฝ๋๋ค. (๋ค๋ง, Llama-2 70b๊ฐ ๊ฐ์ฅ ์ ํํ์ค๋ ์ฐธ๊ณ ํ์ฌ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.) """
css = """.toast-wrap { display: none !important } """
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]]
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
additional_inputs = [
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]
chatbot_stream = gr.Chatbot(avatar_images=(
"https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW",
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
), bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(
predict,
title=title,
description=description,
chatbot=chatbot_stream,
css=css,
examples=examples,
)
with gr.Blocks() as demo:
with gr.Tab("์คํธ๋ฆฌ๋ฐ"):
chatbot_stream.like(vote, None, None)
chat_interface_stream.render()
with gr.Row():
with gr.Column(scale=6):
with gr.Row():
model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์ ํ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5)
submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋ก๋", scale=1)
with gr.Column(scale=4):
model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ํ")
submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status])
demo.queue(concurrency_count=75, max_size=100).launch(debug=True,share=True) |