Spaces:
Runtime error
Runtime error
File size: 5,066 Bytes
c97201a ceafe94 fe6b125 c97201a 29786ae c97201a 0864565 37ef0c0 c97201a 856f17d c97201a b558c53 c97201a 0864565 c97201a dc8a06c 856f17d 9b1a4e6 dc8a06c c97201a dc8a06c c97201a 3d37fbb c97201a 62600e4 c97201a 62600e4 c97201a fe6b125 c97201a fe6b125 c97201a 0864565 c97201a 0864565 c97201a 3caf785 c97201a 0864565 f5fb5bf c97201a f44a6d7 c97201a f44a6d7 c97201a f44a6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.llms import HuggingFaceHub
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from urllib.parse import urlparse, urljoin
import requests
from bs4 import BeautifulSoup
app = FastAPI()
# Middleware to allow cross-origin communications
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# Define retriever_chain as a global variable
retriever_chain = None
# Function to crawl all URLs from a domain
def get_all_links_from_domain(domain_url):
print("domain url " + domain_url)
visited_urls = set()
domain_links = set()
parsed_initial_url = urlparse(domain_url)
base_domain = parsed_initial_url.netloc
get_links_from_page(domain_url, visited_urls, domain_links, domain_url)
return domain_links
# Function to crawl links from a page within the same domain
def get_links_from_page(url, visited_urls, all_links, base_domain):
print("url " + url)
print("base_domain " + base_domain)
if not url.startswith(base_domain):
return
if url in visited_urls:
return
visited_urls.add(url)
print("Getting next" + url)
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
base_url = urlparse(url).scheme + '://' + urlparse(url).netloc
links = soup.find_all('a', href=True)
for link in links:
href = link.get('href')
absolute_url = urljoin(base_url, href)
parsed_url = urlparse(absolute_url)
if parsed_url.netloc == base_domain:
all_links.add(absolute_url)
get_links_from_page(absolute_url, visited_urls, all_links, base_domain)
else:
print(f"Failed to retrieve content from {url}. Status code: {response.status_code}")
# Function to load the RAG model
def load_rag_model():
model = HuggingFaceHub(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
)
return model
# Function to index URLs in RAG
def index_urls_in_rag(urls):
# Create a vector store for storing embeddings of documents
vector_store = Chroma(persist_directory="/home/user/.cache/chroma_db")
# Load the RAG model
rag_model = load_rag_model()
for url in urls:
# Get text from the URL
loader = WebBaseLoader(url)
document = loader.load()
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter()
document_chunks = text_splitter.split_documents(document)
# Index document chunks into the vector store
vector_store.add_documents(document_chunks)
# Convert vector store to retriever
retriever = vector_store.as_retriever()
# Define prompt for RAG model
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
# Create history-aware retriever chain
retriever_chain = create_history_aware_retriever(rag_model, retriever, prompt)
return retriever_chain
# Index URLs on app startup
@app.on_event("startup")
async def startup():
domain_url = 'https://www.bofrost.de/faq/'
urls = get_all_links_from_domain(domain_url)
retriever_chain = index_urls_in_rag(urls)
# Define API endpoint to receive queries and provide responses
@app.post("/generate/")
def generate(user_input):
return get_response(user_input, []])
def get_response(message, history=[]):
dialog = history_to_dialog_format(history)
dialog.append({"role": "user", "content": message})
# Define the prompt as a ChatPromptValue object
#user_input = ChatPromptValue(user_input)
# Convert the prompt to a tensor
#input_ids = user_input.tensor
#vs = get_vectorstore_from_url(user_url, all_domain)
vs = get_vectorstore_from_url("https://huggingface.co/Chris4K")
history =[]
retriever_chain = get_context_retriever_chain(vs)
conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
response = conversation_rag_chain.invoke({
"chat_history": history,
"input": message + " Assistant: ",
"chat_message": message + " Assistant: "
})
#print("get_response " +response)
res = response['answer']
parts = res.split(" Assistant: ")
last_part = parts[-1]
return last_part#[-1]['generation']['content']
|