File size: 4,008 Bytes
c97201a
 
ceafe94
fe6b125
 
 
c97201a
 
 
 
 
 
29786ae
 
 
c97201a
0864565
 
 
 
 
 
 
 
c97201a
 
 
 
 
 
 
 
0864565
c97201a
dc8a06c
9b1a4e6
 
 
dc8a06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97201a
 
 
 
 
 
 
dc8a06c
c97201a
 
 
 
 
 
 
3d37fbb
c97201a
 
 
 
62600e4
c97201a
 
 
62600e4
c97201a
 
fe6b125
c97201a
 
fe6b125
c97201a
 
 
 
 
0864565
c97201a
 
0864565
c97201a
3caf785
c97201a
0864565
 
f5fb5bf
c97201a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.llms import HuggingFaceHub
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from urllib.parse import urlparse, urljoin
import requests
from bs4 import BeautifulSoup

app = FastAPI()

# Middleware to allow cross-origin communications
app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'], 
    allow_credentials=True, 
    allow_methods=['*'], 
    allow_headers=['*'],
)

# Function to crawl all URLs from a domain
def get_all_links_from_domain(domain_url):
    visited_urls = set()
    domain_links = set()
    parsed_initial_url = urlparse(domain_url)
    base_domain = parsed_initial_url.netloc
    get_links_from_page(domain_url, visited_urls, domain_links, base_domain)
    return domain_links

# Function to crawl links from a page within the same domain
def get_links_from_page(url, visited_urls, all_links, base_domain):
    if not url.startswith(base_domain):
        return
    
    if url in visited_urls:
        return

    visited_urls.add(url)
    print("Getting next" + url)
    response = requests.get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.content, 'html.parser')
        base_url = urlparse(url).scheme + '://' + urlparse(url).netloc
        links = soup.find_all('a', href=True)

        for link in links:
            href = link.get('href')
            absolute_url = urljoin(base_url, href)
            parsed_url = urlparse(absolute_url)
            
            if parsed_url.netloc == base_domain:
                all_links.add(absolute_url)
                get_links_from_page(absolute_url, visited_urls, all_links, base_domain)

    else:
        print(f"Failed to retrieve content from {url}. Status code: {response.status_code}")

# Function to load the RAG model
def load_rag_model():
    model =  HuggingFaceHub(
        repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
        model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
    )
    return model

# Function to index URLs in RAG
def index_urls_in_rag(urls):
    # Create a vector store for storing embeddings of documents
    vector_store = Chroma(persist_directory="/home/user/.cache/chroma_db")
    
    # Load the RAG model
    rag_model = load_rag_model()

    for url in urls:
        # Get text from the URL
        loader = WebBaseLoader(url)
        document = loader.load()

        # Split the document into chunks
        text_splitter = RecursiveCharacterTextSplitter()
        document_chunks = text_splitter.split_documents(document)

        # Index document chunks into the vector store
        vector_store.add_documents(document_chunks)

    # Convert vector store to retriever
    retriever = vector_store.as_retriever()

    # Define prompt for RAG model
    prompt = ChatPromptTemplate.from_messages([
      MessagesPlaceholder(variable_name="chat_history"),
      ("user", "{input}"),
    ])

    # Create history-aware retriever chain
    retriever_chain = create_history_aware_retriever(rag_model, retriever, prompt)

    return retriever_chain

# Index URLs on app startup
@app.on_event("startup")
async def startup():
    domain_url = 'https://www.bofrost.de/faq/'
    urls = get_all_links_from_domain(domain_url)
    retriever_chain = index_urls_in_rag(urls)

# Define API endpoint to receive queries and provide responses
@app.post("/generate/")
def generate(user_input):
    response = retriever_chain.invoke({
        "chat_history": [],
        "input": user_input
    })
    return response['answer']