File size: 7,984 Bytes
62600e4
 
 
fe6b125
 
 
 
 
99a7864
fe6b125
 
 
 
 
 
 
 
62600e4
9e6c18e
eeb44aa
 
 
 
9e6c18e
fe6b125
 
 
9e6c18e
fe6b125
 
 
 
 
 
 
 
 
 
 
 
9e6c18e
fe6b125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62600e4
fe6b125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62600e4
fe6b125
 
19beff5
fe6b125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85eade9
fe6b125
 
 
 
 
 
 
 
 
 
 
 
62600e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe6b125
 
 
2770f0b
fe6b125
 
 
 
 
85eade9
fe6b125
2770f0b
 
 
fe6b125
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258



#####################################
##  BitsAndBytes
#####################################

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from langchain.llms import HuggingFaceHub
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"

###### other models:
# "Trelis/Llama-2-7b-chat-hf-sharded-bf16"
# "bn22/Mistral-7B-Instruct-v0.1-sharded"
# "HuggingFaceH4/zephyr-7b-beta"

# function for loading 4-bit quantized model
def load_model(model_name: str):

    model =  HuggingFaceHub(
        repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
        model_kwargs={"max_length": 1048, "temperature":0.2, "max_new_tokens":256, "top_p":0.95, "repetition_penalty":1.0},
    )

    """
    :param model_name: Name or path of the model to be loaded.
    :return: Loaded quantized model.
    
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        load_in_4bit=True,
        torch_dtype=torch.bfloat16,
        quantization_config=bnb_config
    )"""
    return model

##################################################
## vs chat
##################################################
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline

from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma

#from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores.faiss import FAISS


from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain


load_dotenv()

def get_vectorstore_from_url(url):
    # get the text in document form
    loader = WebBaseLoader(url)
    document = loader.load()
    
    # split the document into chunks
    text_splitter = RecursiveCharacterTextSplitter()
    document_chunks = text_splitter.split_documents(document)
    ####### 
    ''' 
        FAISS
        A FAISS vector store containing the embeddings of the text chunks.
   '''
    model = "BAAI/bge-base-en-v1.5"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    # load from disk
    vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
 
    #vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    vector_store = Chroma.from_documents(document_chunks, embeddings, persist_directory="./chroma_db")
 



    print("-----")
    print(vector_store.similarity_search("What is ALiBi?"))
    print("-----") 

    #######
    # create a vectorstore from the chunks

    return vector_store





def get_context_retriever_chain(vector_store):

    # specify model huggingface mode name
    model_name = "anakin87/zephyr-7b-alpha-sharded"
   # model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"

    ###### other models:
    # "Trelis/Llama-2-7b-chat-hf-sharded-bf16"
    # "bn22/Mistral-7B-Instruct-v0.1-sharded"
    # "HuggingFaceH4/zephyr-7b-beta"

    # function for loading 4-bit quantized model
     

    llm = load_model(model_name)
    
    retriever = vector_store.as_retriever()
    
    prompt = ChatPromptTemplate.from_messages([
      MessagesPlaceholder(variable_name="chat_history"),
      ("user", "{input}"),
      ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
    ])
    
    retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
    
    return retriever_chain
    
def get_conversational_rag_chain(retriever_chain): 
    
    llm = load_model(model_name)
    
    prompt = ChatPromptTemplate.from_messages([
      ("system", "Du bist ein freundlicher Mitarbeiter einens Call Center und beantwortest basierend auf dem Context. Benutze nur den Inhalt des Context. Antworte mit: Ich bin mir nicht sicher. Wenn die Antwort nicht aus dem Context hervorgeht. Antworte auf Deutsch, bitte? CONTEXT:\n\n{context}"),
      MessagesPlaceholder(variable_name="chat_history"),
      ("user", "{input}"),
    ])
    
    stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
    
    return create_retrieval_chain(retriever_chain, stuff_documents_chain)

def get_response(user_input):
    retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
    conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
    
    response = conversation_rag_chain.invoke({
        "chat_history": st.session_state.chat_history,
        "input": user_query
    })
    
    return response['answer']



###################

###################
import gradio as gr

##from langchain_core.runnables.base import ChatPromptValue
#from torch import tensor

# Create Gradio interface
#vector_store = None  # Set your vector store here
chat_history = []     # Set your chat history here

# Define your function here
def get_response(user_input):

      # Define the prompt as a ChatPromptValue object
    #user_input = ChatPromptValue(user_input)
    
    # Convert the prompt to a tensor
    #input_ids = user_input.tensor
    

    #vs = get_vectorstore_from_url(user_url, all_domain)
    vs = get_vectorstore_from_url("https://www.bofrost.de/shop/fertige-gerichte_5507/auflaeufe_5509/hack-wirsing-auflauf.html?position=1&clicked=")
    print("------ here 22 " )
    chat_history =[]
    retriever_chain = get_context_retriever_chain(vs)
    conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
    
    response = conversation_rag_chain.invoke({
        "chat_history": chat_history,
        "input": user_input
    })
    
    return response['answer']


def history_to_dialog_format(chat_history: list[str]):
    dialog = []
    if len(chat_history) > 0:
        for idx, message in enumerate(chat_history[0]):
            role = "user" if idx % 2 == 0 else "assistant"
            dialog.append({
                "role": role,
                "content": message,
            })
    return dialog

def get_response(message, history):
    dialog = history_to_dialog_format(history)
    dialog.append({"role": "user", "content": message})

      # Define the prompt as a ChatPromptValue object
    #user_input = ChatPromptValue(user_input)
    
    # Convert the prompt to a tensor
    #input_ids = user_input.tensor
    

    #vs = get_vectorstore_from_url(user_url, all_domain)
    vs = get_vectorstore_from_url("https://www.bofrost.de/shop/fertige-gerichte_5507/auflaeufe_5509/hack-wirsing-auflauf.html?position=1&clicked=")
    print("------ here 22 " )
    chat_history =[]
    retriever_chain = get_context_retriever_chain(vs)
    conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
    
    response = conversation_rag_chain.invoke({
        "chat_history": chat_history,
        "input": user_input
    })
    print(response)
    return response[-1]['generation']['content']    

    



def simple(text:str):
  return text +" hhhmmm "

app = gr.ChatInterface(
    fn=get_response,
    #fn=simple,
    inputs=["text"],
    outputs="text",
    title="Chat with Websites",
    description="TSchreibe hier deine Frage rein...",
    #allow_flagging=False
    retry_btn=None,
    undo_btn=None,
    clear_btn=None 
)

app.launch(debug=True, share=True)#wie registriere ich mich bei bofrost? Was kosten Linguine