File size: 3,119 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
# coding: utf-8

from __future__ import absolute_import, division, print_function

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
from utils.metrics import ConfusionMatrix
from PIL import Image
import os

# torch.cuda.synchronize()
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True

def collate(batch):
    image = [ b['image'] for b in batch ] # w, h
    label = [ b['label'] for b in batch ]
    id = [ b['id'] for b in batch ]
    adj_s = [ b['adj_s'] for b in batch ]
    return {'image': image, 'label': label, 'id': id, 'adj_s': adj_s}

def preparefeatureLabel(batch_graph, batch_label, batch_adjs, device='cpu'):
    batch_size = len(batch_graph)
    labels = torch.LongTensor(batch_size)
    max_node_num = 0

    for i in range(batch_size):
        labels[i] = batch_label[i]
        max_node_num = max(max_node_num, batch_graph[i].shape[0])
    
    masks = torch.zeros(batch_size, max_node_num)
    adjs =  torch.zeros(batch_size, max_node_num, max_node_num)
    batch_node_feat = torch.zeros(batch_size, max_node_num, 512)

    for i in range(batch_size):
        cur_node_num =  batch_graph[i].shape[0]
        #node attribute feature
        tmp_node_fea = batch_graph[i]
        batch_node_feat[i, 0:cur_node_num] = tmp_node_fea

        #adjs
        adjs[i, 0:cur_node_num, 0:cur_node_num] = batch_adjs[i]
        
        #masks
        masks[i,0:cur_node_num] = 1  

    node_feat = batch_node_feat.to(device)
    labels = labels.to(device)
    adjs = adjs.to(device)
    masks = masks.to(device)

    return node_feat, labels, adjs, masks

class Trainer(object):
    def __init__(self, n_class):
        self.metrics = ConfusionMatrix(n_class)

    def get_scores(self):
        acc = self.metrics.get_scores()

        return acc

    def reset_metrics(self):
        self.metrics.reset()
    
    def plot_cm(self):
        self.metrics.plotcm()

    def train(self, sample, model):
        node_feat, labels, adjs, masks = preparefeatureLabel(sample['image'], sample['label'], sample['adj_s'])
        pred,labels,loss = model.forward(node_feat, labels, adjs, masks)

        return pred,labels,loss

class Evaluator(object):
    def __init__(self, n_class):
        self.metrics = ConfusionMatrix(n_class)
    
    def get_scores(self):
        acc = self.metrics.get_scores()

        return acc

    def reset_metrics(self):
        self.metrics.reset()

    def plot_cm(self):
        self.metrics.plotcm()

    def eval_test(self, sample, model, graphcam_flag=False):
        node_feat, labels, adjs, masks = preparefeatureLabel(sample['image'], sample['label'], sample['adj_s'])
        if not graphcam_flag:
            with torch.no_grad():
                pred,labels,loss = model.forward(node_feat, labels, adjs, masks)
        else:
            torch.set_grad_enabled(True)
            pred,labels,loss= model.forward(node_feat, labels, adjs, masks, graphcam_flag=graphcam_flag)
        return pred,labels,loss