File size: 34,233 Bytes
2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 2b51b88 aeb42a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import numpy as np
import pandas as pd
import altair as alt
import streamlit as st
import geopandas as gpd
import json
st.set_page_config(layout="wide")
st.markdown("""
<style>
select {
font-size: 20px !important;
}
label {
font-size: 20px !important;
}
</style>
""", unsafe_allow_html=True)
@st.cache_data
def load_data():
df1 = pd.read_csv("https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Traffic_Crashes_-_Crashes_20250420.csv")
df1 = df1.dropna(subset=['LATITUDE', 'LONGITUDE'])
# df2 = gpd.read_file('https://data.cityofchicago.org/resource/igwz-8jzy.geojson')
df2 = gpd.read_file("https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Boundaries%20-%20Community%20Areas_20250504.geojson")
return df1, df2
@st.cache_data
def preprocess_data():
traffic, areas = load_data()
traffic['CRASH_DATE'] = pd.to_datetime(traffic['CRASH_DATE'])
traffic['YEAR'] = traffic['CRASH_DATE'].dt.year
traffic = traffic[
(traffic['YEAR'].between(2018, 2024)) &
(traffic['INJURIES_TOTAL'] > 0) &
(traffic['LONGITUDE'] != 0) & (traffic['LATITUDE'] != 0)
]
traffic['DAY_TYPE'] = traffic['CRASH_DAY_OF_WEEK'].apply(lambda x: 'Weekend' if x in [1, 7] else 'Weekday')
areas['geometry_area'] = areas.geometry
traffic_gdf = gpd.GeoDataFrame(
traffic,
geometry=gpd.points_from_xy(traffic['LONGITUDE'], traffic['LATITUDE']),
crs="EPSG:4326"
)
traffic_gdf2 = gpd.sjoin(
traffic_gdf,
areas[['area_numbe', 'community', 'geometry', 'geometry_area']],
how='left',
predicate='within'
)
polygon_unique = traffic_gdf2[['geometry_area', 'community', 'area_numbe', 'INJURIES_TOTAL', 'YEAR']].dropna().copy()
polygon_unique = polygon_unique.groupby(['geometry_area', 'community', 'area_numbe', 'YEAR']).agg(
INJURIES_TOTAL=('INJURIES_TOTAL', 'sum')
).reset_index()
polygon_unique = polygon_unique.set_geometry('geometry_area')
geojson_data = json.loads(polygon_unique.to_json())
return traffic_gdf2, geojson_data
st.title("🚦 Injured on the Way: An Overview of Chicago Traffic Injuries (2018-2024)")
# today = datetime.today().strftime("%B %d, %Y")
st.markdown(
f"<span style='font-size:18px; color:black;'>By Keyu (Chloe) Cai, Yutong Zheng | Updated May 05, 2025</span>",
unsafe_allow_html=True
)
st.markdown("---")
st.subheader('Understand the Traffic Crash Data in City of Chicago with Us:')
# st.title('Streamlit App for IS445 FP3')
# st.subheader('Created by Keyu (Chloe) Cai and Yutong Zheng')
# # st.text('Created by Keyu (Chloe) Cai and Yutong Zheng (Group 8)')
# st.header('Dashboard for Interactive Visualization')
st.markdown("""
<div style='font-size:20px; line-height:1.6; text-align: justify;'>
Traffic safety is a concern for every city, and Chicago is no exception.
Every year, more than 100,000 crashes occur on its streets, many of which result in injuries or even fatalities.
Understanding the patterns behind these incidents—when they happen, where they happen, and under what conditions—is essential for making informed decisions about infrastructure, traffic enforcement, and public awareness.
We take a closer look at traffic injury data from Chicago between 2018 and 2024 to uncover trends that might help reduce future accidents.
By turning raw data into clear visualizations, we hope to make these insights more accessible and useful for anyone who cares about safer roads.
</div>
""", unsafe_allow_html=True)
st.markdown('---')
st.markdown("""
<div style='font-size:22px; font-weight:bold; margin-bottom:10px;'>🚦 Where Injuries Happen Most in Chicago</div>
<div style='font-size:20px; line-height:1.6; text-align: justify;'>
The map (top-left heatmap) shows that traffic-related injuries are not evenly distributed across Chicago. From 2018 to 2024, areas like Austin (Community Area 25), Near North Side (8), Near West Side (28), and Greater Grand Crossing (69) have consistently seen higher numbers of injuries.
These neighborhoods vary widely in terms of population, economic background, and city infrastructure. For example, some are crowded with residents or located near downtown with busy roads and heavy traffic, while others may face infrastructure challenges or limited traffic safety resources.
At the same time, many other parts of the city show lower levels of injuries, especially in areas with fewer major intersections or lower vehicle and pedestrian volume. Overall, this pattern suggests that both urban activity and resource allocation may influence where and how often injuries happen on Chicago’s roads.
</div>
""", unsafe_allow_html=True)
st.markdown("<div style='height: 30px;'></div>", unsafe_allow_html=True)
st.markdown(
"""
<div style='font-size:22px; font-weight:bold; margin-bottom:10px;'>🚦 Hourly Crash Patterns: Weekdays vs Weekends</div>
<div style='font-size:20px; line-height:1.6; text-align: justify;'>
When looking at citywide data from 2018 to 2024, we see a clear pattern in when crashes with injuries tend to happen (see top-right line chart).
During the early morning to early evening hours (roughly 6 AM to 8 PM), weekdays consistently see more crashes per hour than weekends. This likely reflects heavier traffic during commute times, school drop-offs, and busy weekday routines.
In contrast, during late-night and very early morning hours, weekends tend to have more crashes, possibly tied to nightlife or late travel.
While this pattern is clear accross the whole city, it’s important to note that different community areas may show their unique trends based on their local traffic, population, and neighborhood activity.
</div>
""",
unsafe_allow_html=True
)
st.markdown("<div style='height: 30px;'></div>", unsafe_allow_html=True)
st.markdown(
"""
<div style='font-size:22px; font-weight:bold; margin-bottom:10px;'>🚦 Fatal Injuries Are More Common in Darker Lighting Conditions</div>
<div style='font-size:20px; line-height:1.6; text-align: justify;'>
Between 2018 and 2024, crash data shows that deadly injuries are more likely to happen and fatal injury rates are generally higher in darker conditions (see bottom-left bar chart).
The colors are assigned based on lighting brightness — the darker the lighting condition, the deeper the blue color shade.
The three most dangerous lighting conditions with the highest fatal injury rates are usually <b>“Darkness, Lighted Road,” “Darkness,”</b> and <b>“Dusk.”</b>
Although their exact ranking changes a bit each year, these three consistently lead, highlighting that poor lighting can be risky even when streetlights are present.
On the other hand, conditions like <b>“Daylight”</b> and <b>“Dawn”</b> tend to have lower fatal injury rates.
These findings align with common traffic safety concerns—drivers may have longer reaction times or reduced awareness in low-light settings.
</div>
""",
unsafe_allow_html=True
)
st.markdown("<div style='height: 30px;'></div>", unsafe_allow_html=True)
st.markdown(
"""
<div style='font-size:22px; font-weight:bold; margin-bottom:10px;'>🚦 Crash Damage Levels Over the Years</div>
<div style='font-size:20px; line-height:1.6; text-align: justify;'>
From 2018 to 2024, crashes that caused <b>over $1,500 in damage</b> have consistently made up the largest portion of all injury-related crashes in Chicago (see bottom-right grouped bar chart).
While the overall number of such cases dropped slightly in 2020—possibly due to reduced traffic during the pandemic—but then numbers quickly rose again in the following years and even reached new highs in 2024.
In comparison, crashes with less cost (under $1,500) have remained relatively stable or even decreased slightly over time.
This trend could suggest more serious crashes happening or better reporting of higher-cost accidents.
It’s also worth noting that while this is the overall city trend, when we look at different community areas, some show steadier numbers while others have more fluctuation in damage levels.
Factors like road design, local driving behavior, and traffic volume may all play a role.
</div>
""",
unsafe_allow_html=True
)
st.markdown('---')
st.subheader('Explore More Through Our Interactive Dashboard!')
st.markdown("<span style='font-size:18px; color:gray;'>" \
"Use the dropdown in the bottom-left to select a different year. " \
"You can also click on different areas in the heatmap to update the other charts based on that specific community.</span>",
unsafe_allow_html=True)
# st.markdown("<p style='color:gray; font-size:16px;'>Scroll down to explore trends in injury-related crashes by time, location, lighting condition, and damage level.</p>", unsafe_allow_html=True)
# traffic, areas = load_data()
# # Transform date column
# traffic['CRASH_DATE'] = pd.to_datetime(traffic['CRASH_DATE'])
# # Raw dataset already has 'Hour' and 'Month'
# traffic['YEAR'] = traffic['CRASH_DATE'].dt.year
# traffic['DY'] = traffic['CRASH_DATE'].dt.day
# traffic_analysis = traffic.loc[:, traffic.columns.isin(['YEAR', 'LONGITUDE', 'LATITUDE', 'CRASH_DAY_OF_WEEK',
# 'INJURIES_TOTAL', 'CRASH_HOUR', 'LIGHTING_CONDITION',
# 'DAMAGE','INJURIES_FATAL'])]
# # Select years with complete records (2018-2024)
# traffic_analysis = traffic_analysis[(traffic_analysis['YEAR'].isin(range(2018, 2025))) & (traffic_analysis['INJURIES_TOTAL'] > 0)].copy()
# traffic_analysis = traffic_analysis[(traffic_analysis['LONGITUDE'] != 0) & (traffic_analysis['LATITUDE'] != 0)].copy()
# # Add Weekday/Weekend label for each record
# traffic_analysis['DAY_TYPE'] = traffic_analysis['CRASH_DAY_OF_WEEK'].apply(lambda x: 'Weekend' if x in [1, 7] else 'Weekday')
# # Prepare for plotting community areas
# areas['geometry_area'] = areas.geometry
# traffic_gdf = gpd.GeoDataFrame(
# traffic_analysis,
# geometry=gpd.points_from_xy(traffic_analysis['LONGITUDE'], traffic_analysis['LATITUDE']),
# crs="EPSG:4326"
# )
# traffic_gdf2 = gpd.sjoin(traffic_gdf, areas[['area_numbe', 'community', 'geometry', 'geometry_area']], how='left', predicate='within')
# # Deduplicate
# polygon_unique = traffic_gdf2[['geometry_area', 'community', 'area_numbe', 'INJURIES_TOTAL', 'YEAR']].dropna().copy()
# # Aggregation
# polygon_unique = polygon_unique.groupby(['geometry_area', 'community', 'area_numbe', 'YEAR']
# ).agg(INJURIES_TOTAL=('INJURIES_TOTAL', 'sum')).reset_index()
# polygon_unique = polygon_unique.set_geometry('geometry_area')
# geojson_data = json.loads(polygon_unique.to_json())
traffic_gdf2, geojson_data = preprocess_data()
alt.data_transformers.disable_max_rows()
selection = alt.selection_point(fields=["area_numbe"])
year_selector = alt.selection_single(
fields=["YEAR"],
bind=alt.binding_select(
options=sorted(traffic_gdf2['YEAR'].unique()),
name='Select Year: '
)
)
# selected_year = st.selectbox("Select Year: ", sorted(traffic_gdf2["YEAR"].unique()))
# filtered_features = [
# f for f in geojson_data["features"]
# if f["properties"]["YEAR"] == selected_year
# ]
# filtered_geojson = {"type": "FeatureCollection", "features": filtered_features}
# Driver plot: Heatmap of Injuries Total by Location in City of Chicago
# chart = alt.Chart(alt.Data(values=geojson_data['features'])).mark_geoshape(stroke='white', strokeWidth=0.8).encode(
chart = alt.Chart(alt.Data(values=geojson_data["features"])).mark_geoshape(stroke='white', strokeWidth=0.8).encode(
color=alt.condition(
selection,
alt.Color('properties.INJURIES_TOTAL:Q',
scale=alt.Scale(scheme='yellowgreenblue'),
legend=alt.Legend(orient='left', title='Total Injuries', offset=20, titlePadding=15)),
alt.value('lightgray')
),
tooltip=[
alt.Tooltip('properties.area_numbe:N', title='Area Number'),
alt.Tooltip('properties.community:N', title='Community Name'),
alt.Tooltip('properties.INJURIES_TOTAL:Q', title='Total Injuries')
]
).transform_calculate(
area_numbe='datum.properties.area_numbe',
YEAR='datum.properties.YEAR'
).add_params(
selection,
year_selector
).transform_filter(
year_selector
).properties(
width=350,
height=350,
# title='Heatmap of Injuries Total by Location in City of Chicago',
title=alt.TitleParams(
text='Heatmap of Total Injuries by Location in City of Chicago',
anchor='middle'
)
)
# Driven plot 1: Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend
line = alt.Chart(traffic_gdf2.drop(columns=['geometry_area'])).transform_filter(
selection,
year_selector
).transform_aggregate(
crash_count='count()',
groupby=['CRASH_HOUR', 'DAY_TYPE']
).transform_calculate(
adjusted_count="datum.DAY_TYPE == 'Weekday' ? datum.crash_count / 5 : datum.crash_count / 2"
).mark_line(point=True).encode(
x=alt.X('CRASH_HOUR:O', title='Hour of Day'),
y=alt.Y('adjusted_count:Q', title='Average Number of Injury-Related Crashes', axis=alt.Axis(grid=False)),
color=alt.Color('DAY_TYPE:N', scale=alt.Scale(
domain=['Weekday', 'Weekend'],
range=['#225ea8', '#c7e9b4']
), legend=alt.Legend(title='Day Type', titlePadding=15)),
tooltip=[
alt.Tooltip('CRASH_HOUR:O', title='Hour of Day'),
alt.Tooltip('DAY_TYPE:N', title='Day Type'),
alt.Tooltip('adjusted_count:Q', title='Average Count', format=',d')
]
).properties(
width=350,
height=350,
# title='Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend',
title=alt.TitleParams(
text='Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend',
anchor='middle'
)
)
# Driven plot 2: Fatal Injury Rate of Different Lighting Conditions
bar1 = alt.Chart(traffic_gdf2.drop(columns=['geometry_area'])).transform_filter(
selection,
year_selector
).transform_calculate(
is_fatal="datum.INJURIES_FATAL > 0 ? 1 : 0"
).transform_aggregate(
total='count()',
fatal='sum(is_fatal)',
groupby=['LIGHTING_CONDITION']
).transform_calculate(
fatal_rate='datum.fatal / datum.total'
).mark_bar().encode(
x=alt.X('LIGHTING_CONDITION:N', sort='-y', title='Lighting Condition'),
y=alt.Y('fatal_rate:Q', axis=alt.Axis(format='%', grid=False), title='Fatal Injury Rate'),
color=alt.Color('LIGHTING_CONDITION:N',
scale=alt.Scale(
domain=['DARKNESS', 'DARKNESS, LIGHTED ROAD', 'DAWN', 'DUSK', 'DAYLIGHT', 'UNKNOWN'],
range=['#084C88', '#2A6FB6', '#4FA3D9', '#7EC8E3', '#BFEFFF', '#E0F7FA']
# range=['#253494', '#225ea8', '#1d91c0', '#41b6c4', '#7fcdbb', '#c7e9b4', '#edf8b1']
),
legend=alt.Legend(orient='left', title='Lighting Condition', titlePadding=15)),
tooltip=[
alt.Tooltip('LIGHTING_CONDITION:N', title='Lighting Condition'),
alt.Tooltip('fatal_rate:Q', title='Fatal Injury Rate', format='.2%')
]
).properties(
width=400,
height=350,
# title='Fatal Injury Rate of Different Lighting Conditions',
title=alt.TitleParams(
text='Fatal Injury Rate of Different Lighting Conditions',
anchor='middle'
)
)
# Driven plot 2: Fatal Injury Rate of Different Lighting Conditions
# bar1 = alt.Chart(traffic_gdf2.drop(columns=['geometry_area'])).mark_bar().encode(
# x=alt.X('LIGHTING_CONDITION:N', sort='-y', title='Lighting Condition'),
# y=alt.Y('mean(INJURIES_FATAL):Q', scale=alt.Scale(domainMin=0), axis=alt.Axis(format='%'), title='Fatal Injury Rate'),
# color=alt.Color('LIGHTING_CONDITION:N',
# scale=alt.Scale(
# domain=['DARKNESS', 'DARKNESS, LIGHTED ROAD', 'DAWN', 'DUSK', 'DAYLIGHT', 'UNKNOWN'],
# range=['#084C88', '#2A6FB6', '#4FA3D9', '#7EC8E3', '#BFEFFF', '#E0F7FA']
# ),
# legend=alt.Legend(orient='left', title='Lighting Condition', titlePadding=15)),
# tooltip=[
# alt.Tooltip('LIGHTING_CONDITION:N', title='Lighting Condition'),
# alt.Tooltip('mean(INJURIES_FATAL):Q', title='Fatal Injury Rate', format='.2f')
# ]
# ).transform_filter(
# selection
# ).properties(
# width=400,
# height=350,
# title='Fatal Injury Rate of Different Lighting Conditions',
# anchor='middle'
# )
# Driven plot 3: Trends in Crash Damage Costs by Year (2018–2024)
grouped_bar = alt.Chart(traffic_gdf2.drop(columns=['geometry_area'])).mark_bar().encode(
x=alt.X('YEAR:O', title='Year'),
y=alt.Y('count()', title='Count of Injury-Related Crashes', axis=alt.Axis(grid=False)),
color=alt.Color('DAMAGE:N',
scale=alt.Scale(
domain=['$500 OR LESS', '$501 - $1,500', 'OVER $1,500'],
# range=['#AEDFF7', '#4FA3D9', '#084C88']
range=['#c7e9b4', '#0e8fc3', '#084C88']
),
title='Damage Level', legend=alt.Legend(title='Damage Level', titlePadding=15)),
xOffset='DAMAGE:N',
tooltip=[
alt.Tooltip('YEAR:O', title='Year'),
alt.Tooltip('DAMAGE:N', title='Damage Level'),
alt.Tooltip('count()', title='Count')
]
).transform_filter(
selection
).properties(
width=450,
height=350,
# title='Annual Distribution of Crash Damage Levels (2018–2024)',
title=alt.TitleParams(
text='Annual Distribution of Crash Damage Levels (2018–2024)',
anchor='middle'
)
)
top_row = (chart|line)
bottom_row = (bar1|grouped_bar).resolve_scale(color='independent')
final_chart = (top_row & bottom_row).configure_axis(
labelFontSize=16,
titleFontSize=20
).configure_title(
fontSize=24
).configure_legend(
labelFontSize=16,
titleFontSize=18
)
st.altair_chart(final_chart, use_container_width=False)
# st.markdown('''
# ### Dashboard Overview and Guidance
# This dashboard presents an analysis based on the City of Chicago's injury-related crash data from 2018 to 2024. The original dataset (https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if/data_preview) includes detailed information about crashes that resulted in injuries within the city during this time period.
# The top-left figure displays a colored map (heatmap) showing the geographic distribution of total injuries from crashes, with darker areas indicating places where more people were injured. This heatmap serves as the driver plot of the dashboard. Users can click and drag to select a specific region of interest, and the three driven plots will automatically update to reflect data from the selected area.
# The first driven plot (top right) shows the distribution of injury-related crashes across 24 hours, comparing patterns between weekdays and weekends. This chart reflects the number of crashes that caused injuries (not the total number of injuries like in the heatmap).
# The second driven plot (bottom left) illustrates how different lighting conditions (such as daylight, dusk, or darkness) are associated with variations in fatal injury rates. The lighting conditions are sorted from highest to lowest fatal injury rate.
# The third driven plot (bottom right) depicts the trend of crash counts across different damage cost levels from 2018 to 2024. The bar heights represent the number of crashes falling into each damage category for each year.
# Overall, this dashboard highlights key insights from the crash dataset in terms of time, environment, and damage severity. It is designed to help anyone interested in traffic crash data better understand the dataset, and it may also offer valuable guidance for city planners or traffic management officials seeking to improve road safety.
# ''')
st.markdown('---')
st.subheader('Contextual Visualization from Other Sources')
st.image('https://miro.medium.com/v2/resize:fit:640/format:webp/1*2wHu-JlqN-KHQ9mvzlog9Q.png',
caption='Viz 1: Density of Injured and Killed per Borough, by Area in New York City, 2013-2019',
width = 500)
st.image('https://www.researchgate.net/profile/Onur-Sevli/publication/363958427/figure/fig1/AS:11431281087201775@1664467072927/The-number-of-Fatal-Serious-and-Other-injuries-by-year-Data-from-San-Antonio-city-is.png',
caption='Viz 2: Fatal/Serious vs Other Injuries in San Antonio City, 2011-2021',
width = 600)
st.image('Viz3.png',
caption='Viz 3: Traffic Fatalities, by Rural/Urban Classification, 2013-2022 (United States)',
width = 600)
st.image('Viz4.png',
caption='Viz 4: Fatality Rates per 100 Million VMT, by State, 2022',
width = 600)
st.markdown('---')
st.subheader('Check out the Raw Data and Related Sources If Interested:')
st.markdown("""
<div style='font-size:22px; margin-top:15px; font-weight:bold;'>Datasets are hosted on HuggingFace for our application:</div>
<div style='font-size:20px;'>
<ul>
<li>
<b>Data 1:</b>
<a href="https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Traffic_Crashes_-_Crashes_20250420.csv" target="_blank">https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Traffic_Crashes_-_Crashes_20250420.csv</a>
</li>
<li>
<b>Data 2:</b>
<a href="https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Boundaries%20-%20Community%20Areas_20250504.geojson" target="_blank">https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Boundaries%20-%20Community%20Areas_20250504.geojson</a>
</li>
</ul>
</div>
""", unsafe_allow_html=True)
# st.markdown('''
# Citations:
# Viz 1: https://joycegemcanete.medium.com/simple-analysis-of-the-new-york-motor-vehicle-collision-dataset-c6f883646560 ,
# Viz 2: Çelik, A., & Sevli, O. (2022). Predicting traffic accident severity using machine learning techniques. Turkish Journal of Forensic Sciences, 11(2), 79–83. https://doi.org/10.46810/tdfd.1136432
# Viz 3: National Highway Traffic Safety Administration. (2024, June). *Overview of motor vehicle traffic crashes in 2022* (Report No. DOT HS 813 560). U.S. Department of Transportation.
# [Link to original publication](https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813560)
# ''')
st.markdown("""
<div style='font-size:22px; margin-top:15px; font-weight:bold;'>Citations:</div>
<div style='font-size:20px;'>
<ul>
<li>
<b>Viz 1:</b> Canete, J. G. (2023, June 8). <i>Simple analysis of the New York motor vehicle collision dataset</i>. Medium.
<a href="https://joycegemcanete.medium.com/simple-analysis-of-the-new-york-motor-vehicle-collision-dataset-c6f883646560" target="_blank">https://joycegemcanete.medium.com/simple-analysis-of-the-new-york-motor-vehicle-collision-dataset-c6f883646560</a>
</li>
<li>
<b>Viz 2:</b> Çelik, A., & Sevli, O. (2022). <i>Predicting traffic accident severity using machine learning techniques.</i> Turkish Journal of Forensic Sciences, 11(2), 79–83.
<a href="https://doi.org/10.46810/tdfd.1136432" target="_blank">https://doi.org/10.46810/tdfd.1136432</a>
</li>
<li>
<b>Viz 3:</b> National Highway Traffic Safety Administration. (2024, June). <i>Overview of motor vehicle traffic crashes in 2022</i> (Report No. DOT HS 813 560). U.S. Department of Transportation.
<a href="https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813560" target="_blank">https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813560</a>
</li>
<li>
<b>Viz 4:</b> National Highway Traffic Safety Administration. (2024, September). <i>Summary of motor vehicle traffic crashes: 2022 data</i> (Report No. DOT HS 813 643). U.S. Department of Transportation.
<a href="https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813643" target="_blank">https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813643</a>
</li>
<li>
<b>Data 1:</b> City of Chicago. (n.d.). <i>Traffic Crashes - Crashes. </i> Chicago Data Portal. Retrieved April 20, 2025, from
<a href="https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if" target="_blank">https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if</a>
</li>
<li>
<b>Data 2:</b> City of Chicago. (n.d.). <i>Boundaries - Community Areas. </i> Chicago Data Portal. Retrieved May 4, 2025, from
<a href="https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas/igwz-8jzy" target="_blank">https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas/igwz-8jzy</a>
</li>
</ul>
</div>
""", unsafe_allow_html=True)
# # Driver plot: Heatmap of Injuries Total by Location in City of Chicago
# alt.data_transformers.disable_max_rows()
# selection = alt.selection_interval(encodings=['x','y'])
# chart = alt.Chart(traffic_analysis).mark_rect().encode(
# x=alt.X('LONGITUDE:Q', bin=alt.Bin(maxbins=20), title='Longitude (°)'),
# y=alt.Y('LATITUDE:Q', bin=alt.Bin(maxbins=20), title='Latitude (°)'),
# color=alt.Color('sum(INJURIES_TOTAL):Q',
# scale=alt.Scale(scheme='blues'),
# title='Injuries Total',
# legend=alt.Legend(orient='left', offset=20, titlePadding=15)),
# tooltip=[
# alt.Tooltip('count()', title='Crash Count'),
# alt.Tooltip('sum(INJURIES_TOTAL):Q', title='Injuries Total'),
# alt.Tooltip('LATITUDE:Q', bin=True, title='Latitude bin'),
# alt.Tooltip('LONGITUDE:Q', bin=True, title='Longitude bin')
# ]
# ).add_params(
# selection
# ).properties(
# width=300,
# height=300,
# title='Heatmap of Injuries Total by Location in City of Chicago'
# title=alt.TitleParams(
# text='Heatmap of Injuries Total by Location in City of Chicago',
# anchor='middle' # <<< 关键在这里,anchor设成'middle'就是居中!
# )
# )
# # Driven plot 1: Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend
# line = alt.Chart(traffic_analysis).transform_filter(
# selection
# ).transform_aggregate(
# crash_count='count()',
# groupby=['CRASH_HOUR', 'DAY_TYPE']
# ).transform_calculate(
# adjusted_count="datum.DAY_TYPE == 'Weekday' ? datum.crash_count / 5 : datum.crash_count / 2"
# ).mark_line(point=True).encode(
# x=alt.X('CRASH_HOUR:O', title='Hour of Day'),
# y=alt.Y('adjusted_count:Q', title='Average Number of Injury-Related Crashes'),
# color=alt.Color('DAY_TYPE:N', legend=alt.Legend(title='Day Type', titlePadding=15)),
# tooltip=[
# alt.Tooltip('CRASH_HOUR:O', title='Hour of Day'),
# alt.Tooltip('DAY_TYPE:N', title='Day Type'),
# alt.Tooltip('adjusted_count:Q', title='Average Count', format=',d')
# ]
# ).properties(
# width=300,
# height=300,
# title='Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend'
# )
# # line = alt.Chart(traffic_analysis).mark_line(point=True).encode(
# # x=alt.X('CRASH_HOUR:O', title='Hour of Day'),
# # y=alt.Y('count()', title='Number of Injury-Related Crashes'),
# # color=alt.Color('DAY_TYPE:N', legend=alt.Legend(title='Day Type'))
# # ).transform_filter(
# # selection
# # ).properties(
# # width=300,
# # height=300,
# # title='Hourly Distribution of Injury-Related Crashes: Weekday vs Weekend'
# # )
# # Driven plot 2: Fatal Injury Rate of Different Lighting Conditions
# bar1 = alt.Chart(traffic_analysis).mark_bar().encode(
# x=alt.X('LIGHTING_CONDITION:N', sort='-y', title='Lighting Condition'),
# y=alt.Y('mean(INJURIES_FATAL):Q', scale=alt.Scale(domainMin=0), axis=alt.Axis(format='%'), title='Fatal Injury Rate'),
# color=alt.Color('LIGHTING_CONDITION:N',
# scale=alt.Scale(
# domain=['DARKNESS', 'DARKNESS, LIGHTED ROAD', 'DAWN', 'DUSK', 'DAYLIGHT', 'UNKNOWN'],
# range=['#084C88', '#2A6FB6', '#4FA3D9', '#7EC8E3', '#BFEFFF', '#E0F7FA']
# ),
# legend=alt.Legend(orient='left', title='Lighting Condition', titlePadding=15)),
# tooltip=[
# alt.Tooltip('LIGHTING_CONDITION:N', title='Lighting Condition'),
# alt.Tooltip('mean(INJURIES_FATAL):Q', title='Fatal Injury Rate', format='.2f')
# ]
# ).transform_filter(
# selection
# ).properties(
# width=300,
# height=300,
# title='Fatal Injury Rate of Different Lighting Conditions'
# )
# # bar2 = alt.Chart(traffic_analysis).mark_bar().encode(
# # x=alt.X('WEATHER_CONDITION:N'),
# # y=alt.Y('mean(INJURIES_FATAL):Q'),
# # color=alt.Color('WEATHER_CONDITION:N',
# # legend=alt.Legend(orient='right'))
# # ).transform_filter(
# # selection
# # ).properties(
# # width=400,
# # height=400
# # )
# # Driven plot 3: Trends in Crash Damage Costs by Year (2018–2024)
# grouped_bar = alt.Chart(traffic_analysis).mark_bar().encode(
# x=alt.X('YEAR:O', title='Year'),
# y=alt.Y('count()', title='Count'),
# color=alt.Color('DAMAGE:N',
# scale=alt.Scale(
# domain=['$500 OR LESS', '$501 - $1,500', 'OVER $1,500'],
# range=['#AEDFF7', '#4FA3D9', '#084C88']
# ),
# title='Damage Level', legend=alt.Legend(title='Damage Level', titlePadding=15)),
# xOffset='DAMAGE:N',
# tooltip=[
# alt.Tooltip('YEAR:O', title='Year'),
# alt.Tooltip('DAMAGE:N', title='Damage Level'),
# alt.Tooltip('count()', title='Count')
# ]
# ).transform_filter(
# selection
# ).properties(
# width=300,
# height=300,
# title='Annual Distribution of Crash Damage Levels (2018–2024)'
# )
# top_row = chart|line
# bottom_row = (bar1|grouped_bar).resolve_scale(color='independent')
# final_chart = top_row & bottom_row
# # top_row = alt.hconcat(chart, line).resolve_scale(color='independent')
# # bottom_row = alt.hconcat(bar1, grouped_bar).resolve_scale(color='independent')
# # final_chart = alt.vconcat(top_row, bottom_row)
# st.altair_chart(final_chart, use_container_width=False)
# st.markdown('''
# ### Dashboard Overview and Guidance
# This dashboard presents an analysis based on the City of Chicago's injury-related crash data from 2018 to 2024. The original dataset (https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if/data_preview) includes detailed information about crashes that resulted in injuries within the city during this time period.
# The top-left figure displays a colored map (heatmap) showing the geographic distribution of total injuries from crashes, with darker areas indicating places where more people were injured. This heatmap serves as the driver plot of the dashboard. Users can click and drag to select a specific region of interest, and the three driven plots will automatically update to reflect data from the selected area.
# The first driven plot (top right) shows the distribution of injury-related crashes across 24 hours, comparing patterns between weekdays and weekends. This chart reflects the number of crashes that caused injuries (not the total number of injuries like in the heatmap).
# The second driven plot (bottom left) illustrates how different lighting conditions (such as daylight, dusk, or darkness) are associated with variations in fatal injury rates. The lighting conditions are sorted from highest to lowest fatal injury rate.
# The third driven plot (bottom right) depicts the trend of crash counts across different damage cost levels from 2018 to 2024. The bar heights represent the number of crashes falling into each damage category for each year.
# Overall, this dashboard highlights key insights from the crash dataset in terms of time, environment, and damage severity. It is designed to help anyone interested in traffic crash data better understand the dataset, and it may also offer valuable guidance for city planners or traffic management officials seeking to improve road safety.
# ''')
# st.markdown('''
# #### Contexual Dataset
# We have found a contextual dataset, which can be accessed at https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas/igwz-8jzy. This dataset shows the boundaries of the 77 community areas in Chicago. Adding this dataset to our project will help us group traffic accidents by these areas instead of just using latitude and longitude. This makes it easier for people to understand where accidents happen more often and helps tell a clearer story about which neighborhoods have more traffic safety issues.
# ''')
# st.markdown('''
# #### Hosting Datasets
# We would continue our plan for hosting original dataset on HuggingFace like Part 1 (https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Traffic_Crashes_-_Crashes_20250420.csv). To ensure consistency across all datasets, we also decided to host the contextual dataset on Hugging Face as well (https://huggingface.co/datasets/Chloecky/traffic_crashes_chicago/resolve/main/Boundaries_-_Community_Areas_20250424.csv).
# ''') |