File size: 21,843 Bytes
1628024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
#!/usr/bin/env python3
"""

OCR Backend API with Azure Document Intelligence - Cleaned and Optimized

Supports file uploads, URL processing, and web scraping fallback

"""

import os
import io
import requests
import numpy as np
import logging
from typing import Optional, List, Dict, Any
from urllib.parse import urlparse, urljoin
from pathlib import Path
import mimetypes

from fastapi import FastAPI, File, UploadFile, HTTPException, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, HttpUrl
import uvicorn

# Import unified configuration
try:
    from configs import get_config
    config = get_config().ocr
    print("βœ… Using unified configuration")
except ImportError:
    print("⚠️  Unified config not available, using fallback configuration")
    from dotenv import load_dotenv
    load_dotenv()
    
    class FallbackConfig:
        HOST = os.getenv("HOST", "0.0.0.0")
        PORT = int(os.getenv("OCR_PORT", "8400"))
        DEBUG = os.getenv("DEBUG", "True").lower() == "true"
        
        # Azure Document Intelligence configuration
        AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT", "")
        AZURE_DOCUMENT_INTELLIGENCE_KEY = os.getenv("AZURE_DOCUMENT_INTELLIGENCE_KEY", "")
        
        # Web scraping configuration
        MAX_IMAGES_PER_PAGE = int(os.getenv("MAX_IMAGES_PER_PAGE", "10"))
        REQUEST_TIMEOUT = int(os.getenv("REQUEST_TIMEOUT", "30"))
        USER_AGENT = os.getenv("USER_AGENT", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36")
        
        # File size limits
        MAX_FILE_SIZE = 50 * 1024 * 1024  # 50MB
    
    config = FallbackConfig()

from azure.core.credentials import AzureKeyCredential
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import AnalyzeDocumentRequest
from azure.core.exceptions import HttpResponseError

from bs4 import BeautifulSoup
from PIL import Image

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(
    title="OCR Backend API",
    description="OCR service with Azure Document Intelligence, supporting file uploads, URLs, and web scraping",
    version="2.0.0",
    debug=config.DEBUG
)

# CORS configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Pydantic models
class URLRequest(BaseModel):
    url: HttpUrl
    extract_images: bool = True

class OCRResponse(BaseModel):
    success: bool
    content: str
    pages: List[Dict[str, Any]]
    source_type: str  # 'file_upload', 'direct_url', 'web_scraped'
    source_url: Optional[str] = None
    error: Optional[str] = None

class WebScrapingResult(BaseModel):
    text_content: str
    images_found: List[str]
    ocr_results: List[Dict[str, Any]]

# Utility functions
def format_bounding_box(bounding_box):
    """Format bounding box coordinates for display"""
    if not bounding_box:
        return "N/A"
    reshaped_bounding_box = np.array(bounding_box).reshape(-1, 2)
    return ", ".join(["[{}, {}]".format(x, y) for x, y in reshaped_bounding_box])

def is_supported_file_type(content_type: str, filename: str = "") -> bool:
    """Check if the file type is supported for OCR"""
    supported_types = {
        'application/pdf',
        'image/jpeg',
        'image/jpg', 
        'image/png',
        'image/tiff',
        'image/bmp',
        'image/gif'
    }
    
    if content_type and content_type.lower() in supported_types:
        return True
    
    # Check by file extension if content type is unclear
    if filename:
        supported_extensions = {'.pdf', '.jpg', '.jpeg', '.png', '.tiff', '.tif', '.bmp', '.gif'}
        file_ext = Path(filename).suffix.lower()
        return file_ext in supported_extensions
    
    return False

def get_document_intelligence_client():
    """Initialize Azure Document Intelligence client"""
    if (config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT == "" or 
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY == "" or
        config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT == "YOUR_FORM_RECOGNIZER_ENDPOINT" or
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY == "YOUR_FORM_RECOGNIZER_KEY"):
        raise HTTPException(
            status_code=500, 
            detail="Azure Document Intelligence credentials not configured"
        )
    
    return DocumentIntelligenceClient(
        endpoint=config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT,
        credential=AzureKeyCredential(config.AZURE_DOCUMENT_INTELLIGENCE_KEY)
    )

async def process_ocr_from_url(url: str) -> Dict[str, Any]:
    """Process OCR from a direct URL"""
    try:
        client = get_document_intelligence_client()
        
        logger.info(f"Processing OCR from URL: {url}")
        poller = client.begin_analyze_document(
            "prebuilt-read", 
            AnalyzeDocumentRequest(url_source=url)
        )
        result = poller.result()
        
        return format_ocr_result(result, "direct_url", url)
        
    except HttpResponseError as e:
        logger.error(f"Azure OCR error for URL {url}: {e}")
        raise HTTPException(status_code=400, detail=f"OCR processing failed: {e}")
    except Exception as e:
        logger.error(f"Unexpected error processing URL {url}: {e}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")

async def process_ocr_from_bytes(file_bytes: bytes, filename: str = "") -> Dict[str, Any]:
    """Process OCR from file bytes"""
    try:
        client = get_document_intelligence_client()
        
        logger.info(f"Processing OCR from file: {filename} ({len(file_bytes)} bytes)")
        poller = client.begin_analyze_document(
            "prebuilt-read",
            AnalyzeDocumentRequest(bytes_source=file_bytes)
        )
        result = poller.result()
        
        return format_ocr_result(result, "file_upload", filename)
        
    except HttpResponseError as e:
        logger.error(f"Azure OCR error for file {filename}: {e}")
        raise HTTPException(status_code=400, detail=f"OCR processing failed: {e}")
    except Exception as e:
        logger.error(f"Unexpected error processing file {filename}: {e}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")

def format_ocr_result(result, source_type: str, source_identifier: str = "") -> Dict[str, Any]:
    """Format Azure Document Intelligence result into standardized response"""
    pages_data = []
    
    for page in result.pages:
        page_data = {
            "page_number": page.page_number,
            "width": page.width,
            "height": page.height,
            "unit": page.unit,
            "lines": [],
            "words": []
        }
        
        # Process lines
        if hasattr(page, 'lines') and page.lines:
            for line_idx, line in enumerate(page.lines):
                page_data["lines"].append({
                    "line_number": line_idx,
                    "content": line.content,
                    "bounding_box": format_bounding_box(line.polygon) if hasattr(line, 'polygon') else "N/A"
                })
        
        # Process words
        if hasattr(page, 'words') and page.words:
            for word in page.words:
                page_data["words"].append({
                    "content": word.content,
                    "confidence": word.confidence if hasattr(word, 'confidence') else None
                })
        
        pages_data.append(page_data)
    
    # Check for handwritten content
    handwritten_detected = False
    if hasattr(result, 'styles') and result.styles:
        for style in result.styles:
            if hasattr(style, 'is_handwritten') and style.is_handwritten:
                handwritten_detected = True
                break
    
    return {
        "success": True,
        "content": result.content if hasattr(result, 'content') else "",
        "pages": pages_data,
        "source_type": source_type,
        "source_url": source_identifier if source_type == "direct_url" else None,
        "handwritten_detected": handwritten_detected,
        "error": None
    }

async def scrape_web_content(url: str, extract_images: bool = True) -> WebScrapingResult:
    """Scrape web content and extract text and images"""
    try:
        headers = {
            'User-Agent': config.USER_AGENT
        }
        
        logger.info(f"Scraping web content from: {url}")
        response = requests.get(url, headers=headers, timeout=config.REQUEST_TIMEOUT)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.content, 'html.parser')
        
        # Extract text content
        text_content = soup.get_text(separator=' ', strip=True)
        
        images_found = []
        ocr_results = []
        
        if extract_images:
            # Find all images
            img_tags = soup.find_all('img')
            
            for img in img_tags[:config.MAX_IMAGES_PER_PAGE]:
                img_src = img.get('src')
                if img_src:
                    # Make absolute URL
                    img_url = urljoin(url, img_src)
                    images_found.append(img_url)
                    
                    # Try to process image with OCR
                    try:
                        # Check if image URL is accessible and is an image
                        img_response = requests.head(img_url, headers=headers, timeout=10)
                        content_type = img_response.headers.get('content-type', '')
                        
                        if is_supported_file_type(content_type):
                            ocr_result = await process_ocr_from_url(img_url)
                            if ocr_result['content'].strip():  # Only add if there's actual text
                                ocr_results.append({
                                    "image_url": img_url,
                                    "ocr_content": ocr_result['content'],
                                    "pages": ocr_result['pages']
                                })
                    except Exception as e:
                        logger.warning(f"Failed to process image {img_url}: {e}")
                        continue
        
        return WebScrapingResult(
            text_content=text_content,
            images_found=images_found,
            ocr_results=ocr_results
        )
        
    except requests.RequestException as e:
        logger.error(f"Failed to scrape URL {url}: {e}")
        raise HTTPException(status_code=400, detail=f"Failed to scrape URL: {e}")
    except Exception as e:
        logger.error(f"Unexpected error scraping URL {url}: {e}")
        raise HTTPException(status_code=500, detail=f"Unexpected error during web scraping: {e}")

def check_url_is_direct_file(url: str) -> tuple[bool, str]:
    """Check if URL points directly to a file"""
    try:
        headers = {
            'User-Agent': config.USER_AGENT
        }
        
        response = requests.head(url, headers=headers, timeout=10, allow_redirects=True)
        content_type = response.headers.get('content-type', '').lower()
        
        # Check content disposition for filename
        content_disposition = response.headers.get('content-disposition', '')
        filename = ""
        if 'filename=' in content_disposition:
            filename = content_disposition.split('filename=')[1].strip('"')
        
        # Parse URL for filename
        if not filename:
            parsed_url = urlparse(url)
            filename = Path(parsed_url.path).name
        
        is_file = is_supported_file_type(content_type, filename)
        return is_file, content_type
        
    except Exception as e:
        logger.warning(f"Failed to check URL {url}: {e}")
        return False, ""

# API Endpoints
@app.get("/")
async def root():
    azure_di_available = bool(
        config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and 
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY and
        config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT != "YOUR_FORM_RECOGNIZER_ENDPOINT" and
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY != "YOUR_FORM_RECOGNIZER_KEY"
    )
    
    return {
        "message": "OCR Backend API",
        "version": "2.0.0",
        "status": "operational",
        "features": {
            "file_upload": True,
            "url_processing": True,
            "web_scraping": True,
            "azure_document_intelligence": azure_di_available,
            "supported_formats": ["PDF", "JPEG", "PNG", "TIFF", "BMP", "GIF"]
        },
        "limits": {
            "max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
            "max_images_per_page": config.MAX_IMAGES_PER_PAGE,
            "request_timeout_seconds": config.REQUEST_TIMEOUT
        }
    }

@app.get("/health")
async def health_check():
    azure_di_available = bool(
        config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and 
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY and
        config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT != "YOUR_FORM_RECOGNIZER_ENDPOINT" and
        config.AZURE_DOCUMENT_INTELLIGENCE_KEY != "YOUR_FORM_RECOGNIZER_KEY"
    )
    
    # Test Azure DI connection if configured
    azure_di_status = "not_configured"
    if azure_di_available:
        try:
            # Quick test of Azure DI client initialization
            get_document_intelligence_client()
            azure_di_status = "configured"
        except Exception as e:
            azure_di_status = f"error: {str(e)[:100]}"
    
    return {
        "status": "healthy",
        "service": "OCR Backend API",
        "version": "2.0.0",
        "azure_document_intelligence": azure_di_status,
        "configuration": {
            "max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
            "max_images_per_page": config.MAX_IMAGES_PER_PAGE,
            "request_timeout": config.REQUEST_TIMEOUT,
            "endpoint_configured": bool(config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT),
            "key_configured": bool(config.AZURE_DOCUMENT_INTELLIGENCE_KEY)
        }
    }

@app.post("/ocr/upload", response_model=OCRResponse)
async def ocr_upload_file(file: UploadFile = File(...)):
    """Upload a file for OCR processing"""
    
    # Validate file type
    if not is_supported_file_type(file.content_type, file.filename):
        raise HTTPException(
            status_code=400, 
            detail=f"Unsupported file type: {file.content_type}. Supported types: PDF, JPEG, PNG, TIFF, BMP, GIF"
        )
    
    try:
        # Read file content
        file_bytes = await file.read()
        
        # Check file size
        if len(file_bytes) > config.MAX_FILE_SIZE:
            raise HTTPException(
                status_code=400,
                detail=f"File too large. Maximum size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB"
            )
        
        # Process OCR
        result = await process_ocr_from_bytes(file_bytes, file.filename)
        
        return OCRResponse(**result)
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error processing uploaded file: {e}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")

@app.post("/ocr/url", response_model=OCRResponse)
async def ocr_from_url(request: URLRequest):
    """Process OCR from URL - either direct file or web scraping"""
    
    url_str = str(request.url)
    
    # Check if URL points to a direct file
    is_direct_file, content_type = check_url_is_direct_file(url_str)
    
    if is_direct_file:
        # Process as direct file URL
        try:
            result = await process_ocr_from_url(url_str)
            return OCRResponse(**result)
        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Failed to process direct file URL: {e}")
            # Fall back to web scraping
            pass
    
    # Web scraping approach
    try:
        scraping_result = await scrape_web_content(url_str, request.extract_images)
        
        # Combine text content and OCR results
        combined_content = scraping_result.text_content
        
        if scraping_result.ocr_results:
            ocr_content = "\n\n--- OCR from Images ---\n"
            for ocr_result in scraping_result.ocr_results:
                ocr_content += f"\nImage: {ocr_result['image_url']}\n"
                ocr_content += ocr_result['ocr_content'] + "\n"
            combined_content += ocr_content
        
        # Format response
        pages_data = [{
            "page_number": 1,
            "content_type": "web_scraped",
            "text_content": scraping_result.text_content,
            "images_found": len(scraping_result.images_found),
            "ocr_results": len(scraping_result.ocr_results)
        }]
        
        return OCRResponse(
            success=True,
            content=combined_content,
            pages=pages_data,
            source_type="web_scraped",
            source_url=url_str,
            error=None
        )
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Failed to process URL {url_str}: {e}")
        return OCRResponse(
            success=False,
            content="",
            pages=[],
            source_type="web_scraped",
            source_url=url_str,
            error=str(e)
        )

@app.post("/ocr/analyze")
async def analyze_document(

    file: Optional[UploadFile] = File(None),

    url: Optional[str] = Form(None),

    extract_images: bool = Form(True)

):
    """Unified endpoint for document analysis - accepts either file upload or URL"""
    
    if not file and not url:
        raise HTTPException(status_code=400, detail="Either file or URL must be provided")
    
    if file and url:
        raise HTTPException(status_code=400, detail="Provide either file or URL, not both")
    
    try:
        if file:
            # Process uploaded file
            if not is_supported_file_type(file.content_type, file.filename):
                raise HTTPException(
                    status_code=400, 
                    detail=f"Unsupported file type: {file.content_type}"
                )
            
            file_bytes = await file.read()
            
            # Check file size
            if len(file_bytes) > config.MAX_FILE_SIZE:
                raise HTTPException(
                    status_code=400,
                    detail=f"File too large. Maximum size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB"
                )
            
            result = await process_ocr_from_bytes(file_bytes, file.filename)
            return result
            
        else:
            # Process URL
            url_request = URLRequest(url=url, extract_images=extract_images)
            response = await ocr_from_url(url_request)
            return response.dict()
            
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error in analyze_document: {e}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")

# Additional utility endpoints
@app.get("/supported-formats")
async def get_supported_formats():
    """Get list of supported file formats"""
    return {
        "supported_formats": {
            "documents": ["PDF"],
            "images": ["JPEG", "JPG", "PNG", "TIFF", "TIF", "BMP", "GIF"]
        },
        "content_types": [
            "application/pdf",
            "image/jpeg",
            "image/jpg", 
            "image/png",
            "image/tiff",
            "image/bmp",
            "image/gif"
        ],
        "max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
        "max_images_per_page": config.MAX_IMAGES_PER_PAGE
    }

@app.get("/config")
async def get_configuration():
    """Get current service configuration (for debugging)"""
    return {
        "service": "OCR Backend API",
        "version": "2.0.0",
        "configuration": {
            "host": config.HOST,
            "port": config.PORT,
            "debug": config.DEBUG,
            "max_file_size_mb": config.MAX_FILE_SIZE / (1024 * 1024),
            "max_images_per_page": config.MAX_IMAGES_PER_PAGE,
            "request_timeout": config.REQUEST_TIMEOUT,
            "azure_di_configured": bool(
                config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT and 
                config.AZURE_DOCUMENT_INTELLIGENCE_KEY
            )
        }
    }

if __name__ == "__main__":
    print("πŸ”§ Loading OCR service configuration...")
    print(f"🌐 Will start server on {config.HOST}:{config.PORT}")
    print(f"πŸ“„ Azure Document Intelligence: {'βœ… Configured' if config.AZURE_DOCUMENT_INTELLIGENCE_ENDPOINT else '❌ Not configured'}")
    print(f"πŸ“Š Max file size: {config.MAX_FILE_SIZE / (1024*1024):.0f}MB")
    
    uvicorn.run(
        "ocr_service:app",
        host=config.HOST,
        port=config.PORT,
        reload=config.DEBUG,
        log_level="info"
    )