File size: 62,073 Bytes
1628024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 |
#!/usr/bin/env python3
"""
Enhanced NER Analysis Service - Cleaned and Optimized
Advanced Named Entity Recognition with Thai language support,
relationship extraction, and graph database exports
"""
import os
import io
import json
import logging
import re
import csv
import tempfile
import zipfile
from datetime import datetime
from typing import Optional, List, Dict, Any, Union, Tuple
from pathlib import Path
from contextlib import asynccontextmanager
from collections import defaultdict
import xml.etree.ElementTree as ET
import httpx
import asyncpg
from azure.storage.blob import BlobServiceClient
from azure.core.credentials import AzureKeyCredential
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel, HttpUrl, field_validator
import uvicorn
import docx
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import SystemMessage, UserMessage
from openai import AzureOpenAI
# Import unified configuration
try:
from configs import get_config
config = get_config().ner
unified_config = get_config()
print("β
Using unified configuration")
except ImportError:
print("β οΈ Unified config not available, using fallback configuration")
# Fallback configuration
from dotenv import load_dotenv
load_dotenv()
class FallbackConfig:
HOST = os.getenv("HOST", "0.0.0.0")
PORT = int(os.getenv("NER_PORT", "8500"))
DEBUG = os.getenv("DEBUG", "False").lower() == "true"
# Database
POSTGRES_HOST = os.getenv("POSTGRES_HOST", "")
POSTGRES_PORT = int(os.getenv("POSTGRES_PORT", "5432"))
POSTGRES_USER = os.getenv("POSTGRES_USER", "")
POSTGRES_PASSWORD = os.getenv("POSTGRES_PASSWORD", "")
POSTGRES_DATABASE = os.getenv("POSTGRES_DATABASE", "postgres")
# APIs
OCR_SERVICE_URL = os.getenv("OCR_SERVICE_URL", "http://localhost:8400")
DEEPSEEK_ENDPOINT = os.getenv("DEEPSEEK_ENDPOINT", "")
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY", "")
DEEPSEEK_MODEL = os.getenv("DEEPSEEK_MODEL", "DeepSeek-R1-0528")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT", "")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY", "")
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "text-embedding-3-large")
# Storage
AZURE_STORAGE_ACCOUNT_URL = os.getenv("AZURE_STORAGE_ACCOUNT_URL", "")
AZURE_BLOB_SAS_TOKEN = os.getenv("AZURE_BLOB_SAS_TOKEN", "")
BLOB_CONTAINER = os.getenv("BLOB_CONTAINER", "historylog")
# Limits
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
MAX_TEXT_LENGTH = 100000 # 100KB
SUPPORTED_TEXT_FORMATS = {'.txt', '.doc', '.docx', '.rtf'}
SUPPORTED_OCR_FORMATS = {'.pdf', '.jpg', '.jpeg', '.png', '.tiff', '.bmp', '.gif'}
ENTITY_TYPES = [
"PERSON", "ORGANIZATION", "LOCATION", "DATE", "TIME", "MONEY", "PRODUCT", "EVENT",
"VEHICLE", "SUSPICIOUS_OBJECT", "ILLEGAL_ACTIVITY", "EVIDENCE", "ILLEGAL_ITEM",
"WEAPON", "DRUG", "CHEMICAL", "DOCUMENT", "PHONE_NUMBER", "ADDRESS", "EMAIL"
]
RELATIONSHIP_TYPES = [
"works_for", "founded", "located_in", "part_of", "associated_with", "owns", "manages",
"ΰΈΰΈ³ΰΈΰΈ²ΰΈΰΈΰΈ΅ΰΉ", "ΰΈΰΉΰΈΰΈΰΈ±ΰΉΰΈ", "ΰΈΰΈ±ΰΉΰΈΰΈΰΈ’ΰΈΉΰΉΰΈΰΈ΅ΰΉ", "ΰΉΰΈΰΈ΅ΰΉΰΈ’ΰΈ§ΰΈΰΉΰΈΰΈΰΈΰΈ±ΰΈ", "ΰΉΰΈΰΉΰΈΰΉΰΈΰΉΰΈ²ΰΈΰΈΰΈ",
"arrested_by", "investigated_by", "confiscated_from", "used_in", "evidence_of",
"ΰΈΰΈ±ΰΈΰΈΰΈΈΰΈ‘ΰΉΰΈΰΈ’", "ΰΈͺΰΈΰΈΰΈͺΰΈ§ΰΈΰΉΰΈΰΈ’", "ΰΈ’ΰΈΆΰΈΰΈΰΈ²ΰΈ", "ΰΈ«ΰΈ₯ΰΈ±ΰΈΰΈΰΈ²ΰΈΰΈΰΈΰΈ"
]
config = FallbackConfig()
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Export directories
EXPORT_DIR = Path("exports")
EXPORT_DIR.mkdir(exist_ok=True)
# Global variables
pg_pool = None
vector_available = False
clients = {}
# Pydantic Models
class NERRequest(BaseModel):
text: Optional[str] = None
url: Optional[HttpUrl] = None
extract_relationships: bool = True
include_embeddings: bool = True
include_summary: bool = True
generate_graph_files: bool = True
export_formats: List[str] = ["neo4j", "json", "graphml"]
@field_validator('text')
@classmethod
def validate_text_length(cls, v):
if v and len(v) > config.MAX_TEXT_LENGTH:
raise ValueError(f"Text too long (max {config.MAX_TEXT_LENGTH} characters)")
return v
class MultiInputRequest(BaseModel):
texts: Optional[List[str]] = None
urls: Optional[List[HttpUrl]] = None
extract_relationships: bool = True
include_embeddings: bool = True
include_summary: bool = True
combine_results: bool = True
generate_graph_files: bool = True
export_formats: List[str] = ["neo4j", "json", "graphml"]
class EntityResult(BaseModel):
id: str
text: str
label: str
confidence: float
start_pos: int
end_pos: int
source_type: Optional[str] = None
source_index: Optional[int] = None
frequency: int = 1
importance_score: float = 0.0
metadata: Optional[Dict[str, Any]] = None
class RelationshipResult(BaseModel):
id: str
source_entity_id: str
target_entity_id: str
source_entity: str
target_entity: str
relationship_type: str
confidence: float
strength: float
context: str
evidence_count: int = 1
bidirectional: bool = False
metadata: Optional[Dict[str, Any]] = None
class NodeResult(BaseModel):
id: str
label: str
type: str
confidence: float
frequency: int = 1
importance_score: float = 0.0
properties: Dict[str, Any]
class LinkResult(BaseModel):
id: str
source: str
target: str
relationship: str
confidence: float
strength: float
evidence_count: int = 1
properties: Dict[str, Any]
class GraphData(BaseModel):
nodes: List[NodeResult]
links: List[LinkResult]
metadata: Dict[str, Any]
class ExportFiles(BaseModel):
neo4j_nodes: Optional[str] = None
neo4j_relationships: Optional[str] = None
json_export: Optional[str] = None
graphml_export: Optional[str] = None
csv_nodes: Optional[str] = None
csv_edges: Optional[str] = None
gexf_export: Optional[str] = None
analysis_report: Optional[str] = None
download_bundle: Optional[str] = None
class NERResponse(BaseModel):
success: bool
analysis_id: str
source_text: str
source_type: str
language: str
entities: List[EntityResult]
keywords: List[str]
relationships: List[RelationshipResult]
summary: str
embeddings: Optional[List[float]] = None
graph_data: GraphData
export_files: ExportFiles
processing_time: float
character_count: int
word_count: int
sentence_count: int
entity_relationship_stats: Dict[str, Any]
error: Optional[str] = None
class MultiNERResponse(BaseModel):
success: bool
analysis_id: str
combined_analysis: NERResponse
individual_analyses: List[NERResponse]
processing_time: float
total_sources: int
error: Optional[str] = None
# Utility Functions
def generate_unique_id(prefix: str = "item") -> str:
"""Generate unique ID with timestamp"""
return f"{prefix}_{int(datetime.utcnow().timestamp() * 1000)}"
def normalize_text(text: str) -> str:
"""Normalize text for comparison"""
return re.sub(r'\s+', ' ', text.strip().lower())
def calculate_text_similarity(text1: str, text2: str) -> float:
"""Calculate basic text similarity"""
norm1 = normalize_text(text1)
norm2 = normalize_text(text2)
if norm1 == norm2:
return 1.0
words1 = set(norm1.split())
words2 = set(norm2.split())
if not words1 and not words2:
return 1.0
if not words1 or not words2:
return 0.0
intersection = words1.intersection(words2)
union = words1.union(words2)
return len(intersection) / len(union) if union else 0.0
def deduplicate_entities(entities: List[Dict[str, Any]], similarity_threshold: float = 0.8) -> List[Dict[str, Any]]:
"""Remove duplicate entities based on text similarity"""
if not entities:
return []
deduplicated = []
processed_texts = set()
for entity in entities:
entity_text = entity.get('text', '').strip()
normalized_text = normalize_text(entity_text)
if not entity_text or normalized_text in processed_texts:
continue
is_duplicate = False
for existing_entity in deduplicated:
existing_text = existing_entity.get('text', '')
similarity = calculate_text_similarity(entity_text, existing_text)
if similarity >= similarity_threshold:
if entity.get('confidence', 0) > existing_entity.get('confidence', 0):
deduplicated.remove(existing_entity)
break
else:
is_duplicate = True
break
if not is_duplicate:
entity['id'] = entity.get('id', generate_unique_id('ent'))
deduplicated.append(entity)
processed_texts.add(normalized_text)
return deduplicated
def detect_language(text: str) -> str:
"""Enhanced language detection"""
if not text:
return "en"
thai_chars = len(re.findall(r'[ΰΈ-ΰΉ]', text))
english_chars = len(re.findall(r'[a-zA-Z]', text))
total_chars = thai_chars + english_chars
if total_chars == 0:
return "en"
thai_ratio = thai_chars / total_chars
if thai_ratio > 0.3:
return "th"
elif thai_ratio > 0.1:
return "mixed"
else:
return "en"
def get_text_stats(text: str) -> Dict[str, int]:
"""Get comprehensive text statistics"""
return {
"character_count": len(text),
"word_count": len(text.split()),
"sentence_count": len(re.findall(r'[.!?]+', text)),
"paragraph_count": len([p for p in text.split('\n\n') if p.strip()]),
"line_count": len(text.split('\n'))
}
# Client Management
def get_blob_client():
if clients.get('blob') is None and config.AZURE_STORAGE_ACCOUNT_URL and config.AZURE_BLOB_SAS_TOKEN:
try:
clients['blob'] = BlobServiceClient(
account_url=config.AZURE_STORAGE_ACCOUNT_URL,
credential=config.AZURE_BLOB_SAS_TOKEN
)
except Exception as e:
logger.error(f"Failed to initialize blob client: {e}")
return clients.get('blob')
def get_deepseek_client():
if clients.get('deepseek') is None and config.DEEPSEEK_ENDPOINT and config.DEEPSEEK_API_KEY:
try:
clients['deepseek'] = ChatCompletionsClient(
endpoint=config.DEEPSEEK_ENDPOINT,
credential=AzureKeyCredential(config.DEEPSEEK_API_KEY),
api_version="2024-05-01-preview"
)
except Exception as e:
logger.error(f"Failed to initialize DeepSeek client: {e}")
return clients.get('deepseek')
def get_openai_client():
if clients.get('openai') is None and config.AZURE_OPENAI_ENDPOINT and config.AZURE_OPENAI_API_KEY:
try:
clients['openai'] = AzureOpenAI(
api_version="2024-12-01-preview",
azure_endpoint=config.AZURE_OPENAI_ENDPOINT,
api_key=config.AZURE_OPENAI_API_KEY
)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {e}")
return clients.get('openai')
# Database Operations
async def init_database():
global pg_pool, vector_available
logger.info("π Connecting to database...")
try:
pg_pool = await asyncpg.create_pool(
host=config.POSTGRES_HOST,
port=config.POSTGRES_PORT,
user=config.POSTGRES_USER,
password=config.POSTGRES_PASSWORD,
database=config.POSTGRES_DATABASE,
ssl='require',
min_size=2,
max_size=10,
command_timeout=60
)
async with pg_pool.acquire() as conn:
logger.info("β
Database connected")
# Check vector extension
try:
await conn.execute("CREATE EXTENSION IF NOT EXISTS vector;")
await conn.fetchval("SELECT '[1,2,3]'::vector(3)")
vector_available = True
logger.info("β
Vector extension available")
except:
vector_available = False
logger.info("β οΈ Vector extension not available (using JSONB)")
# Create tables
await create_tables(conn)
logger.info("β
Database setup complete")
return True
except Exception as e:
logger.error(f"β Database init failed: {e}")
return False
async def create_tables(conn):
"""Create enhanced database tables for ER model"""
await conn.execute("""
CREATE TABLE IF NOT EXISTS ner_analyses (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
analysis_id VARCHAR(255) UNIQUE NOT NULL,
source_text TEXT NOT NULL,
source_type VARCHAR(50) NOT NULL,
language VARCHAR(10) DEFAULT 'en',
entities JSONB NOT NULL DEFAULT '[]',
keywords JSONB NOT NULL DEFAULT '[]',
relationships JSONB NOT NULL DEFAULT '[]',
summary TEXT DEFAULT '',
embeddings JSONB DEFAULT '[]',
graph_data JSONB DEFAULT '{}',
export_files JSONB DEFAULT '{}',
text_stats JSONB DEFAULT '{}',
er_stats JSONB DEFAULT '{}',
processing_time FLOAT DEFAULT 0,
entity_types JSONB DEFAULT '[]',
relationship_types JSONB DEFAULT '[]',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
""")
await conn.execute("""
CREATE TABLE IF NOT EXISTS entities (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
entity_id VARCHAR(255) NOT NULL,
analysis_id VARCHAR(255) NOT NULL,
text VARCHAR(1000) NOT NULL,
label VARCHAR(100) NOT NULL,
confidence FLOAT DEFAULT 0,
start_pos INTEGER DEFAULT 0,
end_pos INTEGER DEFAULT 0,
frequency INTEGER DEFAULT 1,
importance_score FLOAT DEFAULT 0,
metadata JSONB DEFAULT '{}',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (analysis_id) REFERENCES ner_analyses(analysis_id) ON DELETE CASCADE
);
""")
await conn.execute("""
CREATE TABLE IF NOT EXISTS relationships (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
relationship_id VARCHAR(255) NOT NULL,
analysis_id VARCHAR(255) NOT NULL,
source_entity_id VARCHAR(255) NOT NULL,
target_entity_id VARCHAR(255) NOT NULL,
source_entity VARCHAR(1000) NOT NULL,
target_entity VARCHAR(1000) NOT NULL,
relationship_type VARCHAR(200) NOT NULL,
confidence FLOAT DEFAULT 0,
strength FLOAT DEFAULT 0,
context TEXT DEFAULT '',
evidence_count INTEGER DEFAULT 1,
bidirectional BOOLEAN DEFAULT FALSE,
metadata JSONB DEFAULT '{}',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (analysis_id) REFERENCES ner_analyses(analysis_id) ON DELETE CASCADE
);
""")
# Create indexes
try:
await conn.execute("""
CREATE INDEX IF NOT EXISTS idx_analysis_id ON ner_analyses(analysis_id);
CREATE INDEX IF NOT EXISTS idx_entities_analysis ON entities(analysis_id);
CREATE INDEX IF NOT EXISTS idx_relationships_analysis ON relationships(analysis_id);
""")
except:
pass
# Text Extraction
def extract_text_from_file(file_content: bytes, filename: str) -> str:
file_ext = Path(filename).suffix.lower()
if file_ext == '.txt':
return file_content.decode('utf-8', errors='ignore')
elif file_ext == '.docx':
doc = docx.Document(io.BytesIO(file_content))
return '\n'.join([p.text for p in doc.paragraphs])
else:
return file_content.decode('utf-8', errors='ignore')
async def get_text_from_ocr(file_content: bytes, filename: str) -> str:
try:
async with httpx.AsyncClient(timeout=300) as client:
files = {'file': (filename, file_content)}
response = await client.post(f"{config.OCR_SERVICE_URL}/ocr/upload", files=files)
if response.status_code == 200:
return response.json().get('content', '')
except Exception as e:
logger.error(f"OCR service error: {e}")
pass
raise HTTPException(status_code=500, detail="OCR processing failed")
async def get_text_from_url(url: str) -> str:
try:
async with httpx.AsyncClient(timeout=300) as client:
response = await client.post(f"{config.OCR_SERVICE_URL}/ocr/url",
json={"url": str(url), "extract_images": True})
if response.status_code == 200:
return response.json().get('content', '')
except Exception as e:
logger.error(f"URL processing error: {e}")
pass
raise HTTPException(status_code=500, detail="URL processing failed")
# Enhanced NER and Relationship Analysis
async def analyze_with_deepseek(text: str, language: str = None) -> Dict[str, Any]:
"""Enhanced analysis with improved relationship extraction"""
deepseek_client = get_deepseek_client()
if not deepseek_client:
logger.warning("DeepSeek not configured, using manual extraction")
return extract_manual_entities_and_relationships(text, language)
try:
if not language:
language = detect_language(text)
if language == "th":
system_prompt = """ΰΈΰΈΈΰΈΰΉΰΈΰΉΰΈΰΈΰΈΉΰΉΰΉΰΈΰΈ΅ΰΉΰΈ’ΰΈ§ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈ²ΰΈ£ΰΈΰΈΰΈΰΈ³ΰΈΰΈ²ΰΈ‘ΰΉΰΈΰΈΰΈ₯ΰΈ±ΰΈΰΈ©ΰΈΰΉΰΉΰΈ₯ΰΈ°ΰΈΰΈ²ΰΈ£ΰΈͺΰΈΰΈ±ΰΈΰΈΰΈ§ΰΈ²ΰΈ‘ΰΈͺΰΈ±ΰΈ‘ΰΈΰΈ±ΰΈΰΈΰΉΰΈͺΰΈ³ΰΈ«ΰΈ£ΰΈ±ΰΈΰΈ ΰΈ²ΰΈ©ΰΈ²ΰΉΰΈΰΈ’
ΰΈ§ΰΈ΄ΰΉΰΈΰΈ£ΰΈ²ΰΈ°ΰΈ«ΰΉΰΈΰΉΰΈΰΈΰΈ§ΰΈ²ΰΈ‘ΰΉΰΈ₯ΰΈ°ΰΈͺΰΈΰΈ±ΰΈΰΈΰΉΰΈΰΈ‘ΰΈΉΰΈ₯ΰΈΰΈ±ΰΈΰΈΰΈ΅ΰΉ:
1. ΰΈΰΈ²ΰΈ‘ΰΉΰΈΰΈΰΈ₯ΰΈ±ΰΈΰΈ©ΰΈΰΉΰΈΰΈΈΰΈΰΈΰΈ£ΰΈ°ΰΉΰΈ ΰΈ (ΰΈΰΈΈΰΈΰΈΰΈ₯ ΰΈΰΈΰΈΰΉΰΈΰΈ£ ΰΈͺΰΈΰΈ²ΰΈΰΈΰΈ΅ΰΉ ΰΈ§ΰΈ±ΰΈΰΈΰΈ΅ΰΉ ΰΉΰΈ§ΰΈ₯ΰΈ² ΰΉΰΈΰΈ΄ΰΈ ΰΈ―ΰΈ₯ΰΈ―)
2. ΰΈΰΈ§ΰΈ²ΰΈ‘ΰΈͺΰΈ±ΰΈ‘ΰΈΰΈ±ΰΈΰΈΰΉΰΈ£ΰΈ°ΰΈ«ΰΈ§ΰΉΰΈ²ΰΈΰΈΰΈ²ΰΈ‘ΰΉΰΈΰΈΰΈ₯ΰΈ±ΰΈΰΈ©ΰΈΰΉ - ΰΈΰΉΰΈΰΈΰΈͺΰΈΰΈ±ΰΈΰΈΰΈΈΰΈΰΈΰΈ§ΰΈ²ΰΈ‘ΰΈͺΰΈ±ΰΈ‘ΰΈΰΈ±ΰΈΰΈΰΉΰΈΰΈ΅ΰΉΰΈΰΈ
3. ΰΈΰΈ³ΰΈ«ΰΈ₯ΰΈ±ΰΈΰΈͺΰΈ³ΰΈΰΈ±ΰΈΰΈΰΈ²ΰΈΰΈΰΉΰΈΰΈΰΈ§ΰΈ²ΰΈ‘
4. ΰΈͺΰΈ£ΰΈΈΰΈΰΈΰΈ΅ΰΉΰΈΰΈ£ΰΈΰΈΰΈΰΈ₯ΰΈΈΰΈ‘
ΰΉΰΈ«ΰΉΰΈΰΈ₯ΰΈ₯ΰΈ±ΰΈΰΈΰΉΰΉΰΈΰΉΰΈ JSON:
{
"entities": [{"text": "ΰΈΰΉΰΈΰΈΰΈ§ΰΈ²ΰΈ‘", "label": "ΰΈΰΈ£ΰΈ°ΰΉΰΈ ΰΈ", "confidence": 0.95, "start_pos": 0, "end_pos": 10}],
"keywords": ["ΰΈΰΈ³ΰΈ«ΰΈ₯ΰΈ±ΰΈ1", "ΰΈΰΈ³ΰΈ«ΰΈ₯ΰΈ±ΰΈ2"],
"relationships": [{"source_entity": "A", "target_entity": "B", "relationship_type": "ΰΈΰΈ£ΰΈ°ΰΉΰΈ ΰΈ", "confidence": 0.9, "context": "ΰΈΰΈ£ΰΈ΄ΰΈΰΈ"}],
"summary": "ΰΈͺΰΈ£ΰΈΈΰΈ"
}"""
else:
system_prompt = """You are an expert in Named Entity Recognition and relationship extraction.
Analyze the text and extract:
1. All named entities (people, organizations, locations, dates, money, etc.)
2. ALL relationships between entities - extract every relationship found
3. Important keywords from the text
4. Comprehensive summary
Return ONLY valid JSON:
{
"entities": [{"text": "entity text", "label": "TYPE", "confidence": 0.95, "start_pos": 0, "end_pos": 10}],
"keywords": ["keyword1", "keyword2"],
"relationships": [{"source_entity": "Entity A", "target_entity": "Entity B", "relationship_type": "relationship_type", "confidence": 0.9, "context": "context"}],
"summary": "Comprehensive summary"
}"""
user_prompt = f"ΰΈ§ΰΈ΄ΰΉΰΈΰΈ£ΰΈ²ΰΈ°ΰΈ«ΰΉΰΈΰΉΰΈΰΈΰΈ§ΰΈ²ΰΈ‘ΰΈΰΈ΅ΰΉ:\n\n{text[:8000]}" if language == "th" else f"Analyze this text:\n\n{text[:8000]}"
response = deepseek_client.complete(
messages=[
SystemMessage(content=system_prompt),
UserMessage(content=user_prompt)
],
max_tokens=6000,
model=config.DEEPSEEK_MODEL,
temperature=0.1
)
result_text = response.choices[0].message.content.strip()
# Extract JSON from response
start_idx = result_text.find('{')
end_idx = result_text.rfind('}') + 1
if start_idx != -1 and end_idx > start_idx:
json_text = result_text[start_idx:end_idx]
try:
json_result = json.loads(json_text)
logger.info("β
Successfully parsed JSON from DeepSeek")
except:
try:
fixed_json = json_text.replace("'", '"').replace('True', 'true').replace('False', 'false')
json_result = json.loads(fixed_json)
logger.info("β
Successfully parsed fixed JSON")
except:
json_result = None
else:
json_result = None
if json_result:
entities = deduplicate_entities(json_result.get('entities', []))
keywords = json_result.get('keywords', [])
relationships = json_result.get('relationships', [])
summary = json_result.get('summary', '')
# Ensure relationships are extracted
if len(relationships) == 0 and len(entities) >= 2:
logger.warning("No relationships found by DeepSeek, applying rule-based extraction")
rule_based_relationships = extract_rule_based_relationships(entities, text, language)
relationships.extend(rule_based_relationships)
# Enhance relationships with IDs
for rel in relationships:
if 'id' not in rel:
rel['id'] = generate_unique_id('rel')
if 'strength' not in rel:
rel['strength'] = rel.get('confidence', 0.8)
if 'evidence_count' not in rel:
rel['evidence_count'] = 1
if 'bidirectional' not in rel:
rel['bidirectional'] = False
return {
"entities": entities,
"keywords": keywords[:20],
"relationships": relationships,
"summary": summary or f"Analysis of {len(text)} characters"
}
logger.warning("JSON parsing failed, using manual extraction")
return extract_manual_entities_and_relationships(text, language)
except Exception as e:
logger.error(f"DeepSeek analysis error: {e}")
return extract_manual_entities_and_relationships(text, language)
def extract_rule_based_relationships(entities: List[Dict], text: str, language: str) -> List[Dict]:
"""Extract relationships using rule-based approach"""
relationships = []
if len(entities) < 2:
return relationships
# Define relationship patterns
if language == "th":
patterns = [
(r'(.+?)\s*ΰΈΰΈ³ΰΈΰΈ²ΰΈ(?:ΰΈΰΈ΅ΰΉ|ΰΉΰΈ|ΰΈΰΈ±ΰΈ)\s*(.+)', 'ΰΈΰΈ³ΰΈΰΈ²ΰΈΰΈΰΈ΅ΰΉ'),
(r'(.+?)\s*ΰΉΰΈΰΉΰΈ(?:ΰΉΰΈΰΉΰΈ²ΰΈΰΈΰΈ|ΰΈΰΈΰΈ)\s*(.+)', 'ΰΉΰΈΰΉΰΈΰΉΰΈΰΉΰΈ²ΰΈΰΈΰΈ'),
(r'(.+?)\s*ΰΈΰΈ±ΰΉΰΈΰΈΰΈ’ΰΈΉΰΉ(?:ΰΈΰΈ΅ΰΉ|ΰΉΰΈ)\s*(.+)', 'ΰΈΰΈ±ΰΉΰΈΰΈΰΈ’ΰΈΉΰΉΰΈΰΈ΅ΰΉ'),
(r'(.+?)\s*(?:ΰΈΰΈ±ΰΈΰΈΰΈΈΰΈ‘|ΰΈΰΈ±ΰΈ)\s*(.+)', 'ΰΈΰΈ±ΰΈΰΈΰΈΈΰΈ‘ΰΉΰΈΰΈ’'),
]
else:
patterns = [
(r'(.+?)\s*(?:works?\s+(?:for|at|in)|employed\s+by)\s*(.+)', 'works_for'),
(r'(.+?)\s*(?:owns?|possesses?)\s*(.+)', 'owns'),
(r'(.+?)\s*(?:located\s+(?:in|at)|based\s+in)\s*(.+)', 'located_in'),
(r'(.+?)\s*(?:arrested\s+by|detained\s+by)\s*(.+)', 'arrested_by'),
]
for pattern, rel_type in patterns:
for match in re.finditer(pattern, text, re.IGNORECASE | re.UNICODE):
source_text = match.group(1).strip()
target_text = match.group(2).strip()
source_entity = find_best_entity_match(source_text, entities)
target_entity = find_best_entity_match(target_text, entities)
if source_entity and target_entity and source_entity != target_entity:
relationship = {
'id': generate_unique_id('rel'),
'source_entity': source_entity['text'],
'target_entity': target_entity['text'],
'relationship_type': rel_type,
'confidence': 0.7,
'strength': 0.7,
'context': match.group(0),
'evidence_count': 1,
'bidirectional': False,
'metadata': {'extraction_method': 'rule_based'}
}
relationships.append(relationship)
return relationships
def find_best_entity_match(text: str, entities: List[Dict]) -> Optional[Dict]:
"""Find the best matching entity for given text"""
text_norm = normalize_text(text)
for entity in entities:
if normalize_text(entity['text']) == text_norm:
return entity
best_match = None
best_score = 0
for entity in entities:
score = calculate_text_similarity(text, entity['text'])
if score > best_score and score > 0.6:
best_score = score
best_match = entity
return best_match
def extract_manual_entities_and_relationships(text: str, language: str = None) -> Dict[str, Any]:
"""Enhanced manual extraction with relationship detection"""
if not language:
language = detect_language(text)
entities = []
keywords = []
# Enhanced patterns for different languages
if language == "th":
patterns = {
'PERSON': [r'(?:ΰΈΰΈΈΰΈ|ΰΈΰΈ²ΰΈ’|ΰΈΰΈ²ΰΈ|ΰΈΰΈ²ΰΈΰΈͺΰΈ²ΰΈ§|ΰΈΰΈ£\.?)\s*[ΰΈ-ΰΉ\w\s]+'],
'ORGANIZATION': [r'ΰΈΰΈ£ΰΈ΄ΰΈ©ΰΈ±ΰΈ\s+[ΰΈ-ΰΉ\w\s]+(?:ΰΈΰΈ³ΰΈΰΈ±ΰΈ|ΰΈ‘ΰΈ«ΰΈ²ΰΈΰΈ)', r'ΰΈͺΰΈΰΈ²ΰΈΰΈ΅ΰΈΰΈ³ΰΈ£ΰΈ§ΰΈ[ΰΈ-ΰΉ\w\s]+'],
'LOCATION': [r'ΰΈΰΈ±ΰΈΰΈ«ΰΈ§ΰΈ±ΰΈ[ΰΈ-ΰΉ\w\s]+', r'ΰΈΰΈ£ΰΈΈΰΈΰΉΰΈΰΈΰΈ‘ΰΈ«ΰΈ²ΰΈΰΈΰΈ£|ΰΈΰΈ£ΰΈΈΰΈΰΉΰΈΰΈΰΈ―?'],
'MONEY': [r'\d+(?:,\d{3})*\s*(?:ΰΈΰΈ²ΰΈ|ΰΈ₯ΰΉΰΈ²ΰΈΰΈΰΈ²ΰΈ|ΰΈΰΈ±ΰΈΰΈΰΈ²ΰΈ)'],
'DATE': [r'\d{1,2}\/\d{1,2}\/\d{4}'],
}
words = re.findall(r'[ΰΈ-ΰΉ]+', text)
thai_stop_words = {'ΰΉΰΈ₯ΰΈ°', 'ΰΈ«ΰΈ£ΰΈ·ΰΈ', 'ΰΉΰΈΰΉ', 'ΰΉΰΈ', 'ΰΈΰΈ΅ΰΉ', 'ΰΉΰΈΰΈ·ΰΉΰΈ', 'ΰΈΰΈ±ΰΈ', 'ΰΈΰΈ²ΰΈ', 'ΰΉΰΈΰΈ’', 'ΰΈΰΈΰΈ'}
keywords = [word for word in words if word not in thai_stop_words and len(word) > 2]
else:
patterns = {
'PERSON': [r'\b(?:Mr|Mrs|Ms|Dr|Prof)\.\s+[A-Z][a-zA-Z]+(?:\s+[A-Z][a-zA-Z]+)*'],
'ORGANIZATION': [r'\b[A-Z][a-zA-Z]+\s+(?:Inc|Corp|Company|Ltd|Co|LLC|Corporation|Limited|University)\b'],
'LOCATION': [r'\b(?:New York|Los Angeles|Chicago|Bangkok|London|Paris|Berlin)\b'],
'MONEY': [r'\$[\d,]+\.?\d*', r'\b\d+(?:,\d{3})*\s*(?:dollars?|USD|million|billion)\b'],
'DATE': [r'\b\d{1,2}\/\d{1,2}\/\d{4}\b'],
}
words = re.findall(r'\b[a-zA-Z]{3,}\b', text)
english_stop_words = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
keywords = [word.lower() for word in words if word.lower() not in english_stop_words]
# Extract entities
for label, pattern_list in patterns.items():
for pattern in pattern_list:
for match in re.finditer(pattern, text, re.UNICODE | re.IGNORECASE):
entity_text = match.group().strip()
if len(entity_text) > 1:
entities.append({
"id": generate_unique_id('ent'),
"text": entity_text,
"label": label,
"confidence": 0.8,
"start_pos": match.start(),
"end_pos": match.end(),
"frequency": 1,
"importance_score": 0.7,
"metadata": {"source": "manual_extraction"}
})
# Deduplicate
entities = deduplicate_entities(entities)
keywords = list(set(keywords))[:20]
# Extract relationships
relationships = []
if len(entities) >= 2:
relationships = extract_rule_based_relationships(entities, text, language)
summary = f"Analysis of {len(text)} characters found {len(entities)} entities and {len(relationships)} relationships"
return {
"entities": entities,
"keywords": keywords,
"relationships": relationships,
"summary": summary
}
async def generate_embeddings(text: str) -> List[float]:
openai_client = get_openai_client()
if not openai_client:
return []
try:
response = openai_client.embeddings.create(
input=[text[:8000]],
model=config.EMBEDDING_MODEL,
dimensions=1536
)
return response.data[0].embedding
except Exception as e:
logger.error(f"Embedding failed: {e}")
return []
def create_enhanced_graph_data(entities: List[Dict], relationships: List[Dict]) -> GraphData:
"""Create enhanced graph data with comprehensive ER model"""
nodes = []
links = []
entity_map = {}
# Create nodes
for entity in entities:
node_id = entity.get('id', generate_unique_id('ent'))
entity_map[entity['text']] = node_id
node_properties = {
"original_text": entity['text'],
"entity_type": entity['label'],
"confidence": entity.get('confidence', 0.0),
"start_position": entity.get('start_pos', 0),
"end_position": entity.get('end_pos', 0),
"frequency": entity.get('frequency', 1),
"importance_score": entity.get('importance_score', 0.0),
"metadata": entity.get('metadata', {})
}
nodes.append(NodeResult(
id=node_id,
label=entity['text'],
type=entity['label'],
confidence=entity.get('confidence', 0.0),
frequency=entity.get('frequency', 1),
importance_score=entity.get('importance_score', 0.0),
properties=node_properties
))
# Create links
for rel in relationships:
source_id = entity_map.get(rel['source_entity'])
target_id = entity_map.get(rel['target_entity'])
if source_id and target_id:
link_id = rel.get('id', generate_unique_id('link'))
link_properties = {
"relationship_type": rel['relationship_type'],
"confidence": rel.get('confidence', 0.0),
"strength": rel.get('strength', rel.get('confidence', 0.0)),
"context": rel.get('context', ''),
"evidence_count": rel.get('evidence_count', 1),
"bidirectional": rel.get('bidirectional', False),
"metadata": rel.get('metadata', {})
}
links.append(LinkResult(
id=link_id,
source=source_id,
target=target_id,
relationship=rel['relationship_type'],
confidence=rel.get('confidence', 0.0),
strength=rel.get('strength', rel.get('confidence', 0.0)),
evidence_count=rel.get('evidence_count', 1),
properties=link_properties
))
# Calculate metadata
entity_types = defaultdict(int)
relationship_types = defaultdict(int)
for entity in entities:
entity_types[entity['label']] += 1
for rel in relationships:
relationship_types[rel['relationship_type']] += 1
metadata = {
"total_entities": len(entities),
"total_relationships": len(relationships),
"entity_type_distribution": dict(entity_types),
"relationship_type_distribution": dict(relationship_types),
"graph_density": len(relationships) / (len(entities) * (len(entities) - 1) / 2) if len(entities) > 1 else 0,
"average_entity_confidence": sum(entity.get('confidence', 0) for entity in entities) / len(entities) if entities else 0,
"average_relationship_confidence": sum(rel.get('confidence', 0) for rel in relationships) / len(relationships) if relationships else 0,
"unique_entity_types": len(entity_types),
"unique_relationship_types": len(relationship_types)
}
return GraphData(
nodes=nodes,
links=links,
metadata=metadata
)
# Export Functions (simplified)
async def generate_export_files(analysis_id: str, entities: List[Dict], relationships: List[Dict],
graph_data: GraphData, formats: List[str]) -> ExportFiles:
"""Generate export files for various formats"""
export_files = ExportFiles()
analysis_dir = EXPORT_DIR / analysis_id
analysis_dir.mkdir(exist_ok=True)
try:
if "neo4j" in formats:
nodes_file, rels_file = await generate_neo4j_csv(analysis_dir, entities, relationships)
export_files.neo4j_nodes = str(nodes_file)
export_files.neo4j_relationships = str(rels_file)
if "json" in formats:
json_file = await generate_json_export(analysis_dir, entities, relationships, graph_data)
export_files.json_export = str(json_file)
if "graphml" in formats:
graphml_file = await generate_graphml_export(analysis_dir, entities, relationships)
export_files.graphml_export = str(graphml_file)
logger.info(f"β
Generated export files for analysis {analysis_id}")
except Exception as e:
logger.error(f"β Export file generation failed: {e}")
return export_files
async def generate_neo4j_csv(export_dir: Path, entities: List[Dict], relationships: List[Dict]) -> Tuple[Path, Path]:
"""Generate Neo4j compatible CSV files"""
nodes_file = export_dir / "neo4j_nodes.csv"
with open(nodes_file, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow([
'nodeId:ID', 'text', 'label:LABEL', 'confidence:float',
'frequency:int', 'importance:float'
])
for entity in entities:
writer.writerow([
entity.get('id', generate_unique_id('ent')),
entity['text'],
entity['label'],
entity.get('confidence', 0.0),
entity.get('frequency', 1),
entity.get('importance_score', 0.0)
])
rels_file = export_dir / "neo4j_relationships.csv"
entity_map = {entity['text']: entity.get('id', generate_unique_id('ent')) for entity in entities}
with open(rels_file, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow([
':START_ID', ':END_ID', ':TYPE', 'confidence:float',
'strength:float', 'context'
])
for rel in relationships:
source_id = entity_map.get(rel['source_entity'])
target_id = entity_map.get(rel['target_entity'])
if source_id and target_id:
writer.writerow([
source_id,
target_id,
rel['relationship_type'].upper().replace(' ', '_'),
rel.get('confidence', 0.0),
rel.get('strength', rel.get('confidence', 0.0)),
rel.get('context', '')
])
return nodes_file, rels_file
async def generate_json_export(export_dir: Path, entities: List[Dict], relationships: List[Dict], graph_data: GraphData) -> Path:
"""Generate comprehensive JSON export"""
json_file = export_dir / "analysis_export.json"
export_data = {
"metadata": {
"export_timestamp": datetime.utcnow().isoformat(),
"format_version": "1.0",
"total_entities": len(entities),
"total_relationships": len(relationships)
},
"entities": entities,
"relationships": relationships,
"graph_data": graph_data.dict(),
"statistics": {
"entity_types": list(set(e['label'] for e in entities)),
"relationship_types": list(set(r['relationship_type'] for r in relationships)),
"average_confidence": sum(e.get('confidence', 0) for e in entities) / len(entities) if entities else 0
}
}
with open(json_file, 'w', encoding='utf-8') as f:
json.dump(export_data, f, indent=2, ensure_ascii=False)
return json_file
async def generate_graphml_export(export_dir: Path, entities: List[Dict], relationships: List[Dict]) -> Path:
"""Generate GraphML format"""
graphml_file = export_dir / "graph_export.graphml"
# Create GraphML structure
root = ET.Element('graphml')
root.set('xmlns', 'http://graphml.graphdrawing.org/xmlns')
# Define attributes
ET.SubElement(root, 'key', id='label', **{'for': 'node', 'attr.name': 'label', 'attr.type': 'string'})
ET.SubElement(root, 'key', id='type', **{'for': 'node', 'attr.name': 'type', 'attr.type': 'string'})
ET.SubElement(root, 'key', id='rel_type', **{'for': 'edge', 'attr.name': 'relationship', 'attr.type': 'string'})
graph = ET.SubElement(root, 'graph', id='G', edgedefault='directed')
# Add nodes
entity_map = {}
for entity in entities:
node_id = entity.get('id', generate_unique_id('ent'))
entity_map[entity['text']] = node_id
node = ET.SubElement(graph, 'node', id=node_id)
label_data = ET.SubElement(node, 'data', key='label')
label_data.text = entity['text']
type_data = ET.SubElement(node, 'data', key='type')
type_data.text = entity['label']
# Add edges
for i, rel in enumerate(relationships):
source_id = entity_map.get(rel['source_entity'])
target_id = entity_map.get(rel['target_entity'])
if source_id and target_id:
edge = ET.SubElement(graph, 'edge', id=f"e{i}", source=source_id, target=target_id)
rel_data = ET.SubElement(edge, 'data', key='rel_type')
rel_data.text = rel['relationship_type']
# Write to file
tree = ET.ElementTree(root)
tree.write(graphml_file, encoding='utf-8', xml_declaration=True)
return graphml_file
def calculate_er_stats(entities: List[Dict], relationships: List[Dict]) -> Dict[str, Any]:
"""Calculate Entity-Relationship statistics"""
if not entities:
return {}
entity_types = defaultdict(int)
relationship_types = defaultdict(int)
for entity in entities:
entity_types[entity['label']] += 1
for rel in relationships:
relationship_types[rel['relationship_type']] += 1
return {
"total_entities": len(entities),
"total_relationships": len(relationships),
"entity_type_distribution": dict(entity_types),
"relationship_type_distribution": dict(relationship_types),
"graph_density": len(relationships) / (len(entities) * (len(entities) - 1) / 2) if len(entities) > 1 else 0,
"unique_entity_types": len(entity_types),
"unique_relationship_types": len(relationship_types)
}
async def save_to_database(data: Dict[str, Any]) -> bool:
if not pg_pool:
logger.error("No database pool available")
return False
try:
async with pg_pool.acquire() as conn:
await conn.execute("""
INSERT INTO ner_analyses (
analysis_id, source_text, source_type, language, entities, keywords,
relationships, summary, embeddings, graph_data, export_files, text_stats,
er_stats, processing_time, entity_types, relationship_types
) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12, $13, $14, $15, $16)
ON CONFLICT (analysis_id) DO UPDATE SET
entities = EXCLUDED.entities,
relationships = EXCLUDED.relationships,
summary = EXCLUDED.summary
""",
data['analysis_id'],
data['source_text'][:10000],
data['source_type'],
data['language'],
json.dumps(data['entities'], ensure_ascii=False),
json.dumps(data['keywords'], ensure_ascii=False),
json.dumps(data['relationships'], ensure_ascii=False),
data['summary'],
json.dumps(data.get('embeddings', [])),
json.dumps(data.get('graph_data', {}), ensure_ascii=False, default=str),
json.dumps(data.get('export_files', {}), ensure_ascii=False, default=str),
json.dumps(data.get('text_stats', {})),
json.dumps(data.get('er_stats', {})),
float(data.get('processing_time', 0)),
json.dumps(list(set(entity.get('label', '') for entity in data.get('entities', [])))),
json.dumps(list(set(rel.get('relationship_type', '') for rel in data.get('relationships', []))))
)
logger.info(f"β
Analysis {data['analysis_id']} saved to database")
return True
except Exception as e:
logger.error(f"β DB save failed for {data.get('analysis_id', 'unknown')}: {e}")
return False
async def save_to_blob(analysis_id: str, data: Dict[str, Any]) -> bool:
blob_client = get_blob_client()
if not blob_client:
return False
try:
blob_name = f"ner_analysis/{analysis_id}_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}.json"
blob_client_obj = blob_client.get_blob_client(container=config.BLOB_CONTAINER, blob=blob_name)
blob_client_obj.upload_blob(json.dumps(data, indent=2, ensure_ascii=False, default=str), overwrite=True)
return True
except Exception as e:
logger.error(f"Blob save failed: {e}")
return False
# App Lifecycle
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("π Starting Enhanced NER Analysis Service...")
logger.info("π Database initialization...")
db_ok = await init_database()
if not db_ok:
logger.error("β Database initialization failed!")
raise RuntimeError("Database initialization failed")
logger.info("π Initializing API clients...")
get_deepseek_client()
get_openai_client()
get_blob_client()
logger.info("π Creating export directories...")
EXPORT_DIR.mkdir(exist_ok=True)
logger.info("π Enhanced NER Analysis Service is ready!")
logger.info(f"π‘ Server running on http://{config.HOST}:{config.PORT}")
yield
logger.info("π Shutting down...")
if pg_pool:
await pg_pool.close()
logger.info("β
Database connections closed")
# FastAPI App
app = FastAPI(
title="Enhanced NER Analysis Service",
description="Advanced Named Entity Recognition with relationship extraction and graph exports",
version="2.0.0",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# API Endpoints
@app.get("/")
async def root():
deepseek_available = bool(config.DEEPSEEK_ENDPOINT and config.DEEPSEEK_API_KEY)
openai_available = bool(config.AZURE_OPENAI_ENDPOINT and config.AZURE_OPENAI_API_KEY)
blob_available = bool(config.AZURE_STORAGE_ACCOUNT_URL and config.AZURE_BLOB_SAS_TOKEN)
return {
"message": "Enhanced NER Analysis Service",
"version": "2.0.0",
"status": "operational",
"supported_entities": config.ENTITY_TYPES,
"supported_relationships": config.RELATIONSHIP_TYPES[:10],
"export_formats": ["neo4j", "json", "graphml"],
"features": {
"ner_analysis": True,
"relationship_extraction": True,
"thai_language_support": True,
"graph_database_export": True,
"embedding_generation": openai_available,
"deepseek_analysis": deepseek_available,
"blob_storage": blob_available
}
}
@app.get("/health")
async def health():
deepseek_available = bool(config.DEEPSEEK_ENDPOINT and config.DEEPSEEK_API_KEY)
openai_available = bool(config.AZURE_OPENAI_ENDPOINT and config.AZURE_OPENAI_API_KEY)
blob_available = bool(config.AZURE_STORAGE_ACCOUNT_URL and config.AZURE_BLOB_SAS_TOKEN)
return {
"status": "healthy",
"service": "NER Analysis Service",
"version": "2.0.0",
"database": pg_pool is not None,
"vector_extension": vector_available,
"deepseek": deepseek_available,
"openai": openai_available,
"blob_storage": blob_available,
"supported_entity_count": len(config.ENTITY_TYPES),
"supported_relationship_count": len(config.RELATIONSHIP_TYPES),
"export_formats": ["neo4j", "json", "graphml"]
}
@app.post("/analyze/text", response_model=NERResponse)
async def analyze_text(request: NERRequest, background_tasks: BackgroundTasks):
"""Analyze text for entities and relationships"""
start_time = datetime.utcnow()
analysis_id = f"text_{int(start_time.timestamp())}"
if not request.text or not request.text.strip():
raise HTTPException(status_code=400, detail="Text is required")
try:
language = detect_language(request.text)
text_stats = get_text_stats(request.text)
# Enhanced analysis
analysis_result = await analyze_with_deepseek(request.text, language)
# Generate embeddings if requested
embeddings = []
if request.include_embeddings:
embeddings = await generate_embeddings(request.text)
# Create enhanced graph
graph_data = create_enhanced_graph_data(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Calculate ER statistics
er_stats = calculate_er_stats(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Generate export files if requested
export_files = ExportFiles()
if request.generate_graph_files:
export_files = await generate_export_files(
analysis_id,
analysis_result.get('entities', []),
analysis_result.get('relationships', []),
graph_data,
request.export_formats
)
processing_time = (datetime.utcnow() - start_time).total_seconds()
response_data = {
"analysis_id": analysis_id,
"source_text": request.text,
"source_type": "text_input",
"language": language,
"entities": analysis_result.get('entities', []),
"keywords": analysis_result.get('keywords', []),
"relationships": analysis_result.get('relationships', []),
"summary": analysis_result.get('summary', ''),
"embeddings": embeddings,
"graph_data": graph_data,
"export_files": export_files,
"text_stats": text_stats,
"er_stats": er_stats,
"processing_time": processing_time,
"character_count": text_stats["character_count"],
"word_count": text_stats["word_count"],
"sentence_count": text_stats["sentence_count"]
}
# Save to database in background
background_tasks.add_task(save_to_database, response_data)
background_tasks.add_task(save_to_blob, analysis_id, response_data)
return NERResponse(
success=True,
entity_relationship_stats=er_stats,
**response_data
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Text analysis failed: {e}")
return NERResponse(
success=False,
analysis_id=analysis_id,
source_text=request.text[:1000],
source_type="text_input",
language="unknown",
entities=[],
keywords=[],
relationships=[],
summary="",
graph_data=GraphData(nodes=[], links=[], metadata={}),
export_files=ExportFiles(),
processing_time=(datetime.utcnow() - start_time).total_seconds(),
character_count=0,
word_count=0,
sentence_count=0,
entity_relationship_stats={},
error=str(e)
)
@app.post("/analyze/file", response_model=NERResponse)
async def analyze_file(
file: UploadFile = File(...),
extract_relationships: bool = Form(True),
include_embeddings: bool = Form(True),
include_summary: bool = Form(True),
generate_graph_files: bool = Form(True),
export_formats: str = Form("neo4j,json"),
background_tasks: BackgroundTasks = None
):
"""Analyze uploaded file for entities and relationships"""
start_time = datetime.utcnow()
analysis_id = f"file_{int(start_time.timestamp())}"
if not file.filename:
raise HTTPException(status_code=400, detail="No filename")
try:
file_content = await file.read()
if len(file_content) > config.MAX_FILE_SIZE:
raise HTTPException(status_code=400, detail="File too large")
file_ext = Path(file.filename).suffix.lower()
export_format_list = export_formats.split(',') if export_formats else ["json"]
if file_ext in config.SUPPORTED_TEXT_FORMATS:
text = extract_text_from_file(file_content, file.filename)
source_type = "text_file"
elif file_ext in config.SUPPORTED_OCR_FORMATS:
text = await get_text_from_ocr(file_content, file.filename)
source_type = "ocr_file"
else:
raise HTTPException(status_code=400, detail=f"Unsupported format: {file_ext}")
if not text.strip():
raise HTTPException(status_code=400, detail="No text extracted")
language = detect_language(text)
text_stats = get_text_stats(text)
# Enhanced analysis
analysis_result = await analyze_with_deepseek(text, language)
# Generate embeddings
embeddings = []
if include_embeddings:
embeddings = await generate_embeddings(text)
# Create enhanced graph
graph_data = create_enhanced_graph_data(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Calculate ER statistics
er_stats = calculate_er_stats(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Generate export files
export_files = ExportFiles()
if generate_graph_files:
export_files = await generate_export_files(
analysis_id,
analysis_result.get('entities', []),
analysis_result.get('relationships', []),
graph_data,
export_format_list
)
processing_time = (datetime.utcnow() - start_time).total_seconds()
response_data = {
"analysis_id": analysis_id,
"source_text": text,
"source_type": source_type,
"language": language,
"entities": analysis_result.get('entities', []),
"keywords": analysis_result.get('keywords', []),
"relationships": analysis_result.get('relationships', []),
"summary": analysis_result.get('summary', ''),
"embeddings": embeddings,
"graph_data": graph_data,
"export_files": export_files,
"text_stats": text_stats,
"er_stats": er_stats,
"processing_time": processing_time,
"character_count": text_stats["character_count"],
"word_count": text_stats["word_count"],
"sentence_count": text_stats["sentence_count"]
}
# Save in background
if background_tasks:
background_tasks.add_task(save_to_database, response_data)
background_tasks.add_task(save_to_blob, analysis_id, response_data)
return NERResponse(
success=True,
entity_relationship_stats=er_stats,
**response_data
)
except HTTPException:
raise
except Exception as e:
logger.error(f"File analysis failed: {e}")
return NERResponse(
success=False,
analysis_id=analysis_id,
source_text="",
source_type="file_input",
language="unknown",
entities=[],
keywords=[],
relationships=[],
summary="",
graph_data=GraphData(nodes=[], links=[], metadata={}),
export_files=ExportFiles(),
processing_time=(datetime.utcnow() - start_time).total_seconds(),
character_count=0,
word_count=0,
sentence_count=0,
entity_relationship_stats={},
error=str(e)
)
@app.post("/analyze/url", response_model=NERResponse)
async def analyze_url(request: NERRequest, background_tasks: BackgroundTasks):
"""Analyze URL content for entities and relationships"""
start_time = datetime.utcnow()
analysis_id = f"url_{int(start_time.timestamp())}"
if not request.url:
raise HTTPException(status_code=400, detail="URL is required")
try:
text = await get_text_from_url(str(request.url))
if not text.strip():
raise HTTPException(status_code=400, detail="No text extracted from URL")
language = detect_language(text)
text_stats = get_text_stats(text)
# Enhanced analysis
analysis_result = await analyze_with_deepseek(text, language)
# Generate embeddings
embeddings = []
if request.include_embeddings:
embeddings = await generate_embeddings(text)
# Create enhanced graph
graph_data = create_enhanced_graph_data(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Calculate ER statistics
er_stats = calculate_er_stats(
analysis_result.get('entities', []),
analysis_result.get('relationships', [])
)
# Generate export files
export_files = ExportFiles()
if request.generate_graph_files:
export_files = await generate_export_files(
analysis_id,
analysis_result.get('entities', []),
analysis_result.get('relationships', []),
graph_data,
request.export_formats
)
processing_time = (datetime.utcnow() - start_time).total_seconds()
response_data = {
"analysis_id": analysis_id,
"source_text": text,
"source_type": "url_content",
"language": language,
"entities": analysis_result.get('entities', []),
"keywords": analysis_result.get('keywords', []),
"relationships": analysis_result.get('relationships', []),
"summary": analysis_result.get('summary', ''),
"embeddings": embeddings,
"graph_data": graph_data,
"export_files": export_files,
"text_stats": text_stats,
"er_stats": er_stats,
"processing_time": processing_time,
"character_count": text_stats["character_count"],
"word_count": text_stats["word_count"],
"sentence_count": text_stats["sentence_count"]
}
# Save in background
background_tasks.add_task(save_to_database, response_data)
background_tasks.add_task(save_to_blob, analysis_id, response_data)
return NERResponse(
success=True,
entity_relationship_stats=er_stats,
**response_data
)
except HTTPException:
raise
except Exception as e:
logger.error(f"URL analysis failed: {e}")
return NERResponse(
success=False,
analysis_id=analysis_id,
source_text="",
source_type="url_content",
language="unknown",
entities=[],
keywords=[],
relationships=[],
summary="",
graph_data=GraphData(nodes=[], links=[], metadata={}),
export_files=ExportFiles(),
processing_time=(datetime.utcnow() - start_time).total_seconds(),
character_count=0,
word_count=0,
sentence_count=0,
entity_relationship_stats={},
error=str(e)
)
@app.get("/download/{analysis_id}/{file_type}")
async def download_export_file(analysis_id: str, file_type: str):
"""Download specific export file for an analysis"""
try:
analysis_dir = EXPORT_DIR / analysis_id
if not analysis_dir.exists():
raise HTTPException(status_code=404, detail=f"Analysis {analysis_id} not found")
file_mapping = {
"neo4j_nodes": "neo4j_nodes.csv",
"neo4j_relationships": "neo4j_relationships.csv",
"json": "analysis_export.json",
"graphml": "graph_export.graphml"
}
if file_type not in file_mapping:
raise HTTPException(status_code=400, detail=f"Invalid file type: {file_type}")
file_path = analysis_dir / file_mapping[file_type]
if not file_path.exists():
raise HTTPException(status_code=404, detail=f"File {file_type} not found")
return FileResponse(path=file_path, filename=file_mapping[file_type])
except HTTPException:
raise
except Exception as e:
logger.error(f"Download failed for {analysis_id}/{file_type}: {e}")
raise HTTPException(status_code=500, detail=f"Download failed: {str(e)}")
@app.get("/entity-types")
async def get_entity_types():
"""Get all supported entity types"""
return {
"success": True,
"entity_types": config.ENTITY_TYPES,
"total_count": len(config.ENTITY_TYPES)
}
@app.get("/relationship-types")
async def get_relationship_types():
"""Get all supported relationship types"""
return {
"success": True,
"relationship_types": config.RELATIONSHIP_TYPES,
"total_count": len(config.RELATIONSHIP_TYPES)
}
if __name__ == "__main__":
print("π§ Loading enhanced NER configuration...")
print(f"π Will start server on {config.HOST}:{config.PORT}")
print(f"π·οΈ Enhanced with {len(config.ENTITY_TYPES)} entity types")
print(f"π Enhanced with {len(config.RELATIONSHIP_TYPES)} relationship types")
uvicorn.run(
"ner_service:app",
host=config.HOST,
port=config.PORT,
reload=config.DEBUG,
log_level="info"
) |