File size: 23,069 Bytes
963ae98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
#!/usr/bin/env python3
"""
Unified AI Services - Interactive Demo
Demonstrates the capabilities of the unified system with real examples
"""
import asyncio
import httpx
import json
import time
import sys
from typing import Dict, Any, Optional
# Demo configuration
UNIFIED_URL = "http://localhost:8000"
TIMEOUT = 60
# Demo data
DEMO_TEXTS = {
"thai_crime": """
คดีอาญาที่สำคัญ: การฆาตกรรมที่กรุงเทพมหานคร
เมื่อวันที่ 15 ตุลาคม 2567 เวลา 14:30 น.
นายสมชาย ใจดี อายุ 45 ปี อาชีพนักธุรกิจ
ถูกพบเสียชีวิตที่คอนโดมิเนียม เดอะ ริเวอร์ ซิตี้ ชั้น 25
ผู้ต้องสงสัย: นางสาวมณี รักเงิน อายุ 32 ปี
เป็นเลขานุการของผู้เสียชีวิต
หลักฐาน: พบสารพิษในแก้วน้ำ
เงินจำนวน 500,000 บาท หายไปจากตู้เซฟ
กล้องวงจรปิดบันทึกเหตุการณ์ได้
ตำรวจสถานีทองหล่อทำการสืบสวน
พบว่าผู้ต้องสงสัยมีหนี้สินจำนวนมาก
""",
"english_business": """
Corporate Investigation Report - Tech Acquisition
On October 20, 2024, Microsoft Corporation announced the acquisition
of AI startup InnovateTech for $2.5 billion USD.
Key Personnel:
- CEO Sarah Johnson of InnovateTech
- VP Acquisitions David Chen at Microsoft
- Investment banker Lisa Rodriguez from Goldman Sachs
The deal includes:
- 150 AI researchers and engineers
- Proprietary machine learning algorithms
- Patents portfolio worth $800 million
- Office locations in San Francisco and Seattle
The acquisition strengthens Microsoft's position in the AI market
and provides access to advanced natural language processing technology.
""",
"mixed_content": """
International Business Partnership
บริษัท ไทยเทค จำกัด (ThaiTech Ltd.)
Partnership Agreement between:
- ThaiTech Limited (Thailand)
- Singapore AI Solutions Pte Ltd (Singapore)
- Tokyo Innovation Corp (Japan)
ข้อตกลงความร่วมมือ:
Investment: $10 million USD (approximately 350 million Thai Baht)
Duration: 5 years (2024-2029)
Focus: Artificial Intelligence and Machine Learning
Key Locations:
- Bangkok, Thailand (Head Office)
- สิงคโปร์ (Singapore Regional Office)
- Tokyo, Japan (R&D Center)
Expected Revenue: $50 million USD by 2027
"""
}
class UnifiedDemo:
"""Interactive demo for the unified AI services"""
def __init__(self):
self.session = None
self.demo_results = {}
async def __aenter__(self):
self.session = httpx.AsyncClient(timeout=TIMEOUT)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.session:
await self.session.aclose()
def print_header(self, title: str):
"""Print formatted header"""
print("\n" + "=" * 70)
print(f" {title}")
print("=" * 70)
def print_section(self, title: str):
"""Print section header"""
print(f"\n📋 {title}")
print("-" * 50)
async def check_system_health(self) -> bool:
"""Check if the unified system is healthy"""
try:
response = await self.session.get(f"{UNIFIED_URL}/health")
if response.status_code == 200:
data = response.json()
status = data.get("status")
services = data.get("services", [])
print(f"🏥 System Health: {status}")
for service in services:
health_icon = "✅" if service.get("health") else "❌"
print(f" {health_icon} {service.get('name', 'unknown')}: {service.get('status', 'unknown')}")
healthy_services = [s for s in services if s.get("health")]
if len(healthy_services) >= 3: # At least 3 services should be healthy
print("✅ System is ready for demo!")
return True
else:
print("❌ System is not ready. Please ensure all services are running.")
return False
else:
print(f"❌ Health check failed: HTTP {response.status_code}")
return False
except Exception as e:
print(f"❌ Cannot connect to unified system: {e}")
print("\n💡 Make sure the unified application is running:")
print(" python app.py")
return False
async def demo_unified_analysis(self, text: str, title: str) -> Optional[Dict[str, Any]]:
"""Demonstrate unified analysis capabilities"""
self.print_section(f"Unified Analysis: {title}")
try:
print(f"📝 Analyzing text ({len(text)} characters)...")
print(f" Text preview: {text[:100]}...")
request_data = {
"text": text,
"extract_relationships": True,
"include_embeddings": False,
"include_summary": True,
"generate_graph_files": True,
"export_formats": ["neo4j", "json"],
"enable_rag_indexing": True,
"rag_title": f"Demo: {title}",
"rag_keywords": ["demo", "analysis", "test"],
"rag_metadata": {"demo": True, "category": title.lower()}
}
start_time = time.time()
response = await self.session.post(f"{UNIFIED_URL}/analyze/unified", json=request_data)
processing_time = time.time() - start_time
if response.status_code == 200:
data = response.json()
if data.get("success"):
service_calls = data.get("service_calls", [])
ner_analysis = data.get("ner_analysis", {})
rag_document = data.get("rag_document", {})
print(f"✅ Analysis completed in {processing_time:.2f} seconds")
print(f"📞 Service calls: {', '.join(service_calls)}")
# NER Results
if ner_analysis:
entities = ner_analysis.get("entities", [])
relationships = ner_analysis.get("relationships", [])
language = ner_analysis.get("language", "unknown")
print(f"\n🏷️ NER Analysis Results:")
print(f" Language detected: {language}")
print(f" Entities found: {len(entities)}")
print(f" Relationships found: {len(relationships)}")
# Show top entities by type
entity_types = {}
for entity in entities:
entity_type = entity.get("label", "UNKNOWN")
if entity_type not in entity_types:
entity_types[entity_type] = []
entity_types[entity_type].append(entity.get("text", ""))
print(f"\n 📊 Entity breakdown:")
for entity_type, entity_list in sorted(entity_types.items()):
print(f" {entity_type}: {len(entity_list)} entities")
# Show a few examples
examples = entity_list[:3]
if examples:
print(f" Examples: {', '.join(examples)}")
# Show relationships
if relationships:
print(f"\n 🔗 Relationship examples:")
for rel in relationships[:3]:
source = rel.get("source_entity", "Unknown")
target = rel.get("target_entity", "Unknown")
rel_type = rel.get("relationship_type", "unknown")
confidence = rel.get("confidence", 0)
print(f" {source} → {target} ({rel_type}, {confidence:.2f})")
else:
print(f" ⚠️ No relationships found")
# RAG Results
if rag_document:
print(f"\n💾 RAG Indexing Results:")
print(f" Document ID: {rag_document.get('document_id', 'N/A')}")
print(f" Total chunks: {rag_document.get('total_chunks', 0)}")
print(f" Status: Document indexed for search")
else:
print(f"\n⚠️ RAG indexing was not performed")
# Store results for later use
self.demo_results[title] = data
return data
else:
print(f"❌ Analysis failed: {data.get('error', 'Unknown error')}")
return None
else:
print(f"❌ Request failed: HTTP {response.status_code}")
print(f" Response: {response.text[:200]}")
return None
except Exception as e:
print(f"❌ Analysis error: {e}")
return None
async def demo_combined_search(self):
"""Demonstrate combined search capabilities"""
self.print_section("Combined Search with NER Enhancement")
search_queries = [
"murder investigation Thailand",
"Microsoft acquisition business",
"artificial intelligence partnership"
]
for query in search_queries:
try:
print(f"\n🔍 Searching for: '{query}'")
request_data = {
"query": query,
"limit": 3,
"similarity_threshold": 0.1,
"include_ner_analysis": True,
"ner_export_formats": ["json"]
}
start_time = time.time()
response = await self.session.post(f"{UNIFIED_URL}/search/combined", json=request_data)
search_time = time.time() - start_time
if response.status_code == 200:
data = response.json()
if data.get("success"):
search_results = data.get("search_results", {})
results = search_results.get("results", [])
ner_analyses = search_results.get("ner_analyses", [])
print(f" ✅ Search completed in {search_time:.2f} seconds")
print(f" 📊 Found {len(results)} results")
for i, result in enumerate(results):
chunk = result.get("chunk", {})
similarity = result.get("similarity_score", 0)
doc_info = result.get("document_info", {})
print(f"\n 📄 Result {i+1} (similarity: {similarity:.3f}):")
print(f" Title: {doc_info.get('title', 'Untitled')}")
print(f" Content: {chunk.get('content', '')[:100]}...")
if ner_analyses:
print(f"\n 🏷️ NER analysis performed on top {len(ner_analyses)} results")
for ner_data in ner_analyses:
ner_result = ner_data.get("ner_analysis", {})
if ner_result.get("success"):
entities = ner_result.get("entities", [])
relationships = ner_result.get("relationships", [])
print(f" Result {ner_data.get('result_index', 0)}: {len(entities)} entities, {len(relationships)} relationships")
else:
print(f" ❌ Search failed: {data.get('error', 'Unknown error')}")
else:
print(f" ❌ Search failed: HTTP {response.status_code}")
except Exception as e:
print(f" ❌ Search error: {e}")
async def demo_service_proxies(self):
"""Demonstrate service proxy functionality"""
self.print_section("Service Proxy Demonstration")
# Test NER proxy
try:
print("🧪 Testing NER service proxy...")
test_data = {
"text": "Quick test: Apple Inc. CEO Tim Cook visited Tokyo, Japan.",
"extract_relationships": True,
"include_embeddings": False,
"generate_graph_files": False
}
response = await self.session.post(f"{UNIFIED_URL}/ner/analyze/text", json=test_data)
if response.status_code == 200:
result = response.json()
if result.get("success"):
entities = result.get("entities", [])
print(f" ✅ NER proxy working: found {len(entities)} entities")
else:
print(f" ❌ NER proxy failed: {result.get('error', 'Unknown error')}")
else:
print(f" ❌ NER proxy failed: HTTP {response.status_code}")
except Exception as e:
print(f" ❌ NER proxy error: {e}")
# Test RAG proxy
try:
print("🧪 Testing RAG service proxy...")
response = await self.session.get(f"{UNIFIED_URL}/rag/documents?limit=3")
if response.status_code == 200:
result = response.json()
documents = result.get("documents", [])
print(f" ✅ RAG proxy working: found {len(documents)} documents")
else:
print(f" ❌ RAG proxy failed: HTTP {response.status_code}")
except Exception as e:
print(f" ❌ RAG proxy error: {e}")
# Test OCR proxy
try:
print("🧪 Testing OCR service proxy...")
response = await self.session.get(f"{UNIFIED_URL}/ocr/health")
if response.status_code == 200:
print(f" ✅ OCR proxy working: health check passed")
else:
print(f" ❌ OCR proxy failed: HTTP {response.status_code}")
except Exception as e:
print(f" ❌ OCR proxy error: {e}")
async def demo_service_discovery(self):
"""Demonstrate service discovery"""
self.print_section("Service Discovery")
try:
response = await self.session.get(f"{UNIFIED_URL}/services")
if response.status_code == 200:
data = response.json()
services = data.get("services", {})
unified = data.get("unified", {})
print(f"🔍 Service discovery successful:")
print(f" Unified endpoint: {unified.get('url', 'N/A')}")
for service_name, service_info in services.items():
endpoints = service_info.get("endpoints", [])
description = service_info.get("description", "No description")
url = service_info.get("url", "N/A")
print(f"\n 📡 {service_name.upper()} Service:")
print(f" URL: {url}")
print(f" Description: {description}")
print(f" Endpoints: {len(endpoints)} available")
# Show a few example endpoints
for endpoint in endpoints[:3]:
print(f" • {endpoint}")
if len(endpoints) > 3:
print(f" • ... and {len(endpoints) - 3} more")
else:
print(f"❌ Service discovery failed: HTTP {response.status_code}")
except Exception as e:
print(f"❌ Service discovery error: {e}")
def print_demo_summary(self):
"""Print summary of demo results"""
self.print_section("Demo Summary")
if not self.demo_results:
print("No analysis results to summarize.")
return
total_entities = 0
total_relationships = 0
languages_detected = set()
for title, data in self.demo_results.items():
ner_analysis = data.get("ner_analysis", {})
if ner_analysis:
entities = ner_analysis.get("entities", [])
relationships = ner_analysis.get("relationships", [])
language = ner_analysis.get("language", "unknown")
total_entities += len(entities)
total_relationships += len(relationships)
languages_detected.add(language)
print(f"📊 {title}:")
print(f" Language: {language}")
print(f" Entities: {len(entities)}")
print(f" Relationships: {len(relationships)}")
print(f"\n🎯 Overall Demo Statistics:")
print(f" Total analyses: {len(self.demo_results)}")
print(f" Total entities extracted: {total_entities}")
print(f" Total relationships found: {total_relationships}")
print(f" Languages detected: {', '.join(languages_detected)}")
print(f"\n✨ Capabilities Demonstrated:")
print(f" ✅ Multi-language NER analysis (Thai + English)")
print(f" ✅ Relationship extraction and mapping")
print(f" ✅ RAG document indexing")
print(f" ✅ Combined search with NER enhancement")
print(f" ✅ Service proxy functionality")
print(f" ✅ Unified workflow coordination")
print(f" ✅ Real-time processing and analysis")
async def run_interactive_demo(self):
"""Run the complete interactive demo"""
self.print_header("Unified AI Services - Interactive Demo")
print("This demo will showcase the capabilities of the unified AI system:")
print("• Multi-language NER analysis with relationship extraction")
print("• RAG document indexing and vector search")
print("• Combined workflows and service coordination")
print("• Service proxy functionality")
print("• Real-time health monitoring")
# Check system health
print("\n🔍 Checking system health...")
if not await self.check_system_health():
print("\n❌ Demo cannot proceed - system is not healthy")
return False
# Demo 1: Unified Analysis
self.print_header("Demo 1: Unified Analysis Capabilities")
for title, text in DEMO_TEXTS.items():
await self.demo_unified_analysis(text, title.replace("_", " ").title())
# Small delay between analyses
await asyncio.sleep(1)
# Demo 2: Combined Search
self.print_header("Demo 2: Combined Search with NER Enhancement")
await self.demo_combined_search()
# Demo 3: Service Proxies
self.print_header("Demo 3: Service Proxy Functionality")
await self.demo_service_proxies()
# Demo 4: Service Discovery
self.print_header("Demo 4: Service Discovery")
await self.demo_service_discovery()
# Summary
self.print_header("Demo Complete")
self.print_demo_summary()
print(f"\n🎉 Demo completed successfully!")
print(f"📖 For more information, visit: http://localhost:8000/docs")
return True
async def main():
"""Main demo function"""
print("🎬 Unified AI Services - Interactive Demo")
print("=" * 50)
if len(sys.argv) > 1:
unified_url = sys.argv[1]
global UNIFIED_URL
UNIFIED_URL = unified_url
print(f"🎯 Demo target: {UNIFIED_URL}")
print("\nMake sure the unified application is running:")
print(" python app.py")
# Wait for user confirmation
try:
input("\nPress Enter to start the demo (or Ctrl+C to cancel)...")
except KeyboardInterrupt:
print("\nDemo cancelled.")
return
async with UnifiedDemo() as demo:
success = await demo.run_interactive_demo()
if success:
print(f"\n🏆 Demo completed successfully!")
print(f"The unified AI services are working perfectly.")
else:
print(f"\n⚠️ Demo encountered some issues.")
print(f"Please check the system health and try again.")
if __name__ == "__main__":
try:
asyncio.run(main())
except KeyboardInterrupt:
print("\n\n🛑 Demo interrupted by user")
except Exception as e:
print(f"\n❌ Demo failed: {e}")
sys.exit(1) |