File size: 77,337 Bytes
b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe 1f4a867 b1c16fe fcef35a b1c16fe 1f4a867 b1c16fe fdf059e b1c16fe c6614cb b1c16fe cfdeed9 b1c16fe fdf059e b1c16fe d617300 a3fbf9b 44ab06a d617300 44ab06a d617300 a3fbf9b cfdeed9 a3fbf9b d617300 a3fbf9b d617300 a3fbf9b d617300 a3fbf9b b1c16fe d617300 44ab06a d617300 44ab06a d617300 a3fbf9b d617300 a3fbf9b cfdeed9 a3fbf9b d617300 a3fbf9b d617300 a3fbf9b d617300 a3fbf9b b1c16fe fdf059e b1c16fe 41fb49f b1c16fe fdf059e b1c16fe fdf059e b1c16fe 1e9e3b5 b1c16fe 8dc2689 b1c16fe 78048ba b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe fdf059e b1c16fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 |
#!/usr/bin/env python
import os
import shutil
import tempfile
import json
import torch
import re
import requests
import transformers
import chardet
import deepeval
import difflib
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama.configuration_llama import LlamaConfig
from huggingface_hub import hf_hub_download
from typing import List, Dict, Any
import gradio as gr
from pathlib import Path
# Solve permission issues
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface/datasets"
os.environ["HF_METRICS_CACHE"] = "/tmp/huggingface/metrics"
os.environ["GRADIO_FLAGGING_DIR"] = "/tmp/flagged"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/sentence_transformers"
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface/hf_cache"
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "60"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"] = os.getenv("LANGCHAIN_PROJECT")
# 設置環境變數,確保 AutoGen 可以寫入臨時目錄
os.environ["AUTOGEN_WORKSPACE"] = "/tmp/autogen_workspace"
os.makedirs("/tmp/autogen_workspace", exist_ok=True)
os.chmod("/tmp/autogen_workspace", 0o777) # 確保目錄可寫
# 設置 OpenAI API 相關環境變數
os.environ["OPENAI_API_TYPE"] = "open_ai" # 如果您使用的是 OpenAI API
# ✅ 建立 temp 安全區
os.environ["DEEPEVAL_TELEMETRY_OPT_OUT"] = "YES"
os.environ["DEEPEVAL_RESULTS_FOLDER"] = "/tmp/deepeval_results"
os.makedirs("/tmp/deepeval_results", exist_ok=True)
# ✅ 修正 Python tempdir 基底(避免它寫 home)
import tempfile
tempfile.tempdir = "/tmp"
# 在此處加入 DeepEval 的 monkey-patch,避免全域更改工作目錄
original_evaluate = deepeval.evaluate
def patched_evaluate(*args, **kwargs):
current_dir = os.getcwd()
try:
os.chdir("/tmp")
return original_evaluate(*args, **kwargs)
finally:
os.chdir(current_dir)
deepeval.evaluate = patched_evaluate
SHOW_EVAL = os.getenv("SHOW_EVAL", "false").lower() == "true"
# Load Required Modules
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma, FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.document_loaders import PyPDFLoader, TextLoader, UnstructuredWordDocumentLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from tempfile import mkdtemp
from langchain.schema import AIMessage
from datetime import datetime, timedelta
from zoneinfo import ZoneInfo
from dateutil import parser as date_parser
import numexpr as ne
import pandas as pd
# Multi-Agent Imports
from serpapi import GoogleSearch
# CrewAI Section: completely use CrewAI's Agent, Task, Crew and @tool decorator
from crewai import Crew, Agent, Task, Process
from crewai.tools import tool
from geopy.geocoders import Nominatim
from timezonefinder import TimezoneFinder
from langchain_experimental.agents import create_pandas_dataframe_agent
from langsmith import traceable
from deepeval import evaluate
from deepeval.metrics import AnswerRelevancyMetric
from deepeval.test_case import LLMTestCase
# from langgraph.graph import Graph
from langgraph.graph import StateGraph
from langchain_core.runnables import RunnableLambda
from langchain.chains import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from sentence_transformers import SentenceTransformer
# === AutoGen for multi-intent collaboration ===
from autogen import AssistantAgent, UserProxyAgent, GroupChat, GroupChatManager
try:
from phoenix.trace.langchain import LangChainInstrumentor
LangChainInstrumentor().instrument()
except Exception as e:
print(f"[WARNING] Failed to load Phoenix LangChain trace: {e}")
session_retriever = None
session_qa_chain = None
csv_dataframe = None # CSV tool will use this
# Safe Result Formatter
def safe_format_result(result) -> str:
try:
if hasattr(result, "agent_name") and hasattr(result, "output"):
return f"[Agent: {result.agent_name}]\n{result.output}"
elif isinstance(result, str):
return result
elif isinstance(result, dict):
return json.dumps(result, indent=2)
elif isinstance(result, list):
return "\n".join(str(r) for r in result)
else:
return str(result)
except Exception as e:
return f"Error formatting result: {e}"
# Model and Device Setup
if torch.backends.mps.is_available():
device = "mps"
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print(f"Using device => {device}")
hf_token = os.environ.get("HF_TOKEN")
openai_api_key = os.environ.get("OPENAI_API_KEY")
model_id = "ChienChung/my-llama-1b"
config_path = hf_hub_download(
repo_id=model_id,
filename="config.json",
use_auth_token=hf_token,
cache_dir="/tmp/huggingface"
)
with open(config_path, "r", encoding="utf-8") as f:
config_dict = json.load(f)
if "rope_scaling" in config_dict:
config_dict["rope_scaling"] = {"type": "dynamic", "factor": config_dict["rope_scaling"].get("factor", 32.0)}
model_config = LlamaConfig.from_dict(config_dict)
model_config.trust_remote_code = True
print("Loading Llama model...")
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=model_config,
trust_remote_code=True,
use_auth_token=hf_token,
cache_dir="/tmp/huggingface"
)
model.to(device)
print("Model loaded!")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
use_auth_token=hf_token,
cache_dir="/tmp/huggingface"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded!")
query_pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device != "cpu" else None,
do_sample=False,
temperature=0.0,
max_new_tokens=200,
return_full_text=False
)
# Chroma DB and Document Retrieval Setup
print("Loading Chroma DB for Biden Speech...")
if not os.path.exists("/tmp/chroma_db"):
shutil.copytree("./chroma_db", "/tmp/chroma_db")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectordb = Chroma(persist_directory="/tmp/chroma_db", embedding_function=embeddings)
retriever = vectordb.as_retriever()
custom_prompt = PromptTemplate(
input_variables=["context", "question"],
template="""You are a helpful AI assistant. Use only the text from the context below to answer the user's question.
If the answer is not in the context, say "No relevant info found."
If the question is not in the context, say "No relevant info found."
Return only the final answer in one to three sentences.
Do not restate the question or context.
Do not include these instructions in your final output.
Context:
{context}
Question: {question}
Answer:
"""
)
llm_local = HuggingFacePipeline(pipeline=query_pipeline)
llm_gpt4 = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.2, openai_api_key=openai_api_key)
crew_llm = ChatOpenAI(
model_name="gpt-4o-mini",
temperature=0.2,
openai_api_key=openai_api_key
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa_gpt = ConversationalRetrievalChain.from_llm(
llm=llm_gpt4,
retriever=retriever,
memory=memory,
combine_docs_chain_kwargs={"prompt": custom_prompt}
)
# Helper Function: Extract file path from uploaded file
def get_file_path(file):
if isinstance(file, str):
return file
elif isinstance(file, dict):
# Prefer using the "data" key, then "name"
return file.get("data", file.get("name", None))
elif hasattr(file, "save"):
temp_dir = mkdtemp()
file_path = os.path.join(temp_dir, file.name)
file.save(file_path)
return file_path
else:
return None
# Original functionalities (Tabs 1-4) functions
@traceable(name="Biden LLaMA QA")
def rag_llama_qa(query):
output = RetrievalQA.from_chain_type(
llm=llm_local,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": custom_prompt}
).run(query)
lower_text = output.lower()
idx = lower_text.find("answer:")
return output[idx + len("answer:"):].strip() if idx != -1 else output
@traceable(name="GPT-4 Document QA")
def rag_gpt4_qa(query):
raw_answer = qa_gpt.run(query)
if SHOW_EVAL:
try:
top_docs = retriever.get_relevant_documents(query)
test_case = LLMTestCase(
input=query,
actual_output=raw_answer,
expected_output=raw_answer,
context=[doc.page_content for doc in top_docs[:3]]
)
metric = AnswerRelevancyMetric(model="gpt-4o-mini")
results = evaluate([test_case], [metric])
result = results[0]
print(f"[DeepEval Tab4] Input: {query}")
print(f"[DeepEval Tab4] Passed: {result.passed}, Score: {result.score:.2f}, Reason: {result.reason}")
except Exception as e:
print(f"[DeepEval Tab4] Evaluation failed: {e}")
return raw_answer
@traceable(name="Upload Document QA")
def upload_and_chat(file, query):
file_path = get_file_path(file)
if file_path is None:
return "Unable to obtain the uploaded file path."
if file_path.lower().endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_path.lower().endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file_path)
else:
loader = TextLoader(file_path)
docs = loader.load()
chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
db = FAISS.from_documents(chunks, embeddings)
temp_retriever = db.as_retriever()
qa_temp = RetrievalQA.from_chain_type(
llm=llm_gpt4,
chain_type="stuff",
retriever=temp_retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": custom_prompt}
)
raw_answer = qa_temp.run(query)
if SHOW_EVAL:
try:
test_case = LLMTestCase(
input=query,
actual_output=raw_answer,
expected_output=raw_answer,
context=[d.page_content for d in chunks[:3]]
)
metric = AnswerRelevancyMetric(model="gpt-4o-mini") # default is GPT-4o
results = evaluate([test_case], [metric])
result = results[0]
print(f"[DeepEval QA] Input: {query}")
print(f"[DeepEval QA] Passed: {result.passed}, Score: {result.score:.2f}, Reason: {result.reason}")
except Exception as e:
print(f"[DeepEval QA] Evaluation failed: {e}")
return raw_answer
initial_prompt = PromptTemplate(
input_variables=["text"],
template="""Write a concise and structured summary of the following content. Focus on capturing the main ideas and key details:
{text}
--- Summary ---
"""
)
refine_prompt = PromptTemplate(
input_variables=["existing_answer", "text"],
template="""You already have an existing summary:
{existing_answer}
Refine the summary based on the new content below. Add or update information only if it's relevant. Keep it concise:
{text}
--- Refined Summary ---
"""
)
@traceable(name="Document Summarise")
def document_summarize(file):
file_path = get_file_path(file)
if file_path is None:
return "Unable to obtain the uploaded file."
if file_path.lower().endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_path.lower().endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file_path)
else:
loader = TextLoader(file_path)
docs = loader.load()
summarize_chain = load_summarize_chain(llm_gpt4, chain_type="refine", question_prompt=initial_prompt, refine_prompt=refine_prompt)
summary = summarize_chain.invoke(docs)
return summary['output_text']
def csv_agent(file, query):
file_path = get_file_path(file)
if file_path is None:
return "Unable to obtain the uploaded CSV file."
try:
with open(file_path, 'rb') as f:
result = chardet.detect(f.read())
encoding = result['encoding']
df = pd.read_csv(file_path, encoding=encoding)
except Exception as e:
return f"Error reading CSV: {e}"
safe_dict = {"df": df}
try:
result = ne.evaluate(query, local_dict=safe_dict)
return str(result)
except Exception as e:
return f"Query error: {e}"
def search_web(query):
if isinstance(query, dict):
query = query.get("query", "")
api_key = os.environ.get("SERPAPI_API_KEY")
if not api_key:
return "SERPAPI_API_KEY not set. Please set the environment variable."
params = {"engine": "google", "q": query, "api_key": api_key, "num": 10}
search = GoogleSearch(params)
results = search.get_dict()
if "organic_results" in results:
raw_output = ""
for result in results["organic_results"]:
title = result.get("title", "No Title")
link = result.get("link", "No Link")
snippet = result.get("snippet", "No Snippet")
raw_output += f"Title: {title}\nLink: {link}\nSnippet: {snippet}\n\n"
prompt = f"""
You are a helpful assistant. Given the following web search results and the user's question:
1. First, identify **only** the most relevant entries.
2. Then, summarise the key insights using fluent, **British English**.
3. If the user's question asks for trends, categories, or multiple items, you may present key points in a non-markdown bullet-point style (e.g. use "•" instead of "-", avoid using "**" for bold).
4. Otherwise, reply in a short, natural paragraph.
5. Do **not** use any markdown formatting such as `**`, `##`, or list syntax.
6. Keep your answer concise and professional, as if explaining to a colleague.
7. If no relevant info is found, say: "Sorry, I couldn't find a reliable answer from the current results."
--- Web Search Results ---
{raw_output}
--- User's Question ---
"{query}"
Answer:
"""
summarized = _general_chat(prompt)
return summarized if summarized else raw_output.strip()
else:
return "No results found."
def uploaded_qa(file, query):
file_path = get_file_path(file)
if file_path is None:
return "Unable to obtain the uploaded file path."
if file_path.lower().endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_path.lower().endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file_path)
else:
loader = TextLoader(file_path)
docs = loader.load()
chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
db = FAISS.from_documents(chunks, embeddings)
temp_retriever = db.as_retriever()
qa_temp = RetrievalQA.from_chain_type(
llm=llm_gpt4,
chain_type="stuff",
retriever=temp_retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": custom_prompt}
)
return qa_temp.run(query)
# CrewAI Multi-Agent System (Tab 5)
# Completely abandon langchain.agents.Tool and use CrewAI's @tool decorator to define tools
from pydantic import BaseModel
class SimpleQuery(BaseModel):
query: str
def _general_chat(query: str) -> str:
try:
response = llm_gpt4.invoke(query)
if isinstance(response, AIMessage):
response = response.content # Extract the actual string
if any(kw in response.lower() for kw in ["i'm not sure", "i don't know", "no information", "can't find"]):
return _search_web_tool(query)
return response
except Exception as e:
return f"General chat error: {e}"
@tool("general_chat")
def general_chat_tool(query: str) -> str:
"""General assistant: Answer general questions without relying on documents."""
try:
response = llm_gpt4.invoke(query)
if isinstance(response, AIMessage):
response = response.content # Extract the actual string
if any(kw in response.lower() for kw in ["i'm not sure", "i don't know", "no information", "can't find"]):
return search_web(query)
return response
except Exception as e:
return f"General chat error: {e}"
def location_to_timezone(location: str) -> str:
try:
geo = Nominatim(user_agent="time_agent_demo")
loc = geo.geocode(location)
if not loc:
return "Europe/London"
tf = TimezoneFinder()
return tf.timezone_at(lng=loc.longitude, lat=loc.latitude) or "Europe/London"
except Exception:
return "Europe/London"
def get_time_tool(query: str) -> str:
# use GPT to find location keyword
try:
location_prompt = f"""
You are a location extractor. Given a user's query about time or date, return the location mentioned in it. If not found, return "London".
Examples:
- "What's the time in Tokyo now?" → Tokyo
- "今天台北幾點?" → Taipei
- "現在在紐約幾點?" → New York
- "今天幾號?" → London
- "What date is today?" → London
Now process this query: "{query}"
"""
location_response = llm_gpt4.invoke(location_prompt)
if isinstance(location_response, AIMessage):
location = location_response.content.strip()
else:
location = str(location_response).strip()
except Exception as e:
location = "London"
location_key = location.lower()
tz_str = location_to_timezone(location)
now = datetime.now(ZoneInfo(tz_str))
# return time or date
q_lower = query.lower()
if any(k in q_lower for k in ["date", "幾號", "today", "day"]):
return now.strftime(f"The date in {location.title()} is %B %d, %Y (%A).")
elif any(k in q_lower for k in ["time", "幾點", "現在"]):
return now.strftime(f"The time in {location.title()} is %I:%M %p.")
else:
return now.strftime(f"The local time in {location.title()} is %I:%M %p on %B %d, %Y.")
@tool("time_tl")
def time_tool(query: str) -> str:
"""Time Agent: Answer time or date queries worldwide using LLM + GeoLocator + TimezoneFinder."""
# use GPT to find location keyword
try:
location_prompt = f"""
You are a location extractor. Given a user's query about time or date, return the location mentioned in it. If not found, return "London".
Examples:
- "What's the time in Tokyo now?" → Tokyo
- "今天台北幾點?" → Taipei
- "現在在紐約幾點?" → New York
- "今天幾號?" → London
- "What date is today?" → London
Now process this query: "{query}"
"""
location_response = llm_gpt4.invoke(location_prompt)
if isinstance(location_response, AIMessage):
location = location_response.content.strip()
else:
location = str(location_response).strip()
except Exception as e:
location = "London"
location_key = location.lower()
tz_str = location_to_timezone(location)
now = datetime.now(ZoneInfo(tz_str))
# return time or date
q_lower = query.lower()
if any(k in q_lower for k in ["date", "幾號", "today", "day"]):
return now.strftime(f"The date in {location.title()} is %B %d, %Y (%A).")
elif any(k in q_lower for k in ["time", "幾點", "現在"]):
return now.strftime(f"The time in {location.title()} is %I:%M %p.")
else:
return now.strftime(f"The local time in {location.title()} is %I:%M %p on %B %d, %Y.")
weather_api_key = os.environ.get("WEATHER_API_KEY")
def get_time_tool2(query: str) -> datetime:
try:
# Step 1: 抽出地點
location_prompt = f"""
You are a location extractor. Given a user's query about time or date, return the location mentioned in it.
If not found, return "London".
Query: "{query}"
"""
location_response = llm_gpt4.invoke(location_prompt)
location = location_response.content.strip() if isinstance(location_response, AIMessage) else str(location_response).strip()
# Step 2: 當地目前時間(加入 DEBUG)
print(f"[DEBUG] Extracted Location: {location}")
tz_str = location_to_timezone(location)
print(f"[DEBUG] Timezone: {tz_str}")
now = datetime.now(ZoneInfo(tz_str))
print(f"[DEBUG] Local Time at {location}: {now}")
# Step 3: 動態 few-shot prompt(每次更新 based on now)
examples = [
("five hours later", now + timedelta(hours=5)),
("later", now + timedelta(hours=2)),
("soon", now + timedelta(minutes=30)),
("shortly", now + timedelta(minutes=15)),
("after a while", now + timedelta(hours=1)),
("tomorrow at 3pm", now.replace(hour=15, minute=0, second=0) + timedelta(days=1)),
("the day after tomorrow at 10am", now.replace(hour=10, minute=0, second=0) + timedelta(days=2)),
("last Monday 9am", (now - timedelta(days=(now.weekday() + 7))).replace(hour=9, minute=0, second=0)),
("next Monday", (now + timedelta(days=(7 - now.weekday()))).replace(hour=12, minute=0, second=0)),
("last Friday", (now - timedelta(days=(now.weekday() - 4 + 7) % 7)).replace(hour=12, minute=0, second=0)),
("next Friday", (now + timedelta(days=(4 - now.weekday() + 7) % 7)).replace(hour=12, minute=0, second=0)),
("in 10 hours", now + timedelta(hours=10)),
("this weekend", (now + timedelta(days=(5 - now.weekday()) % 7)).replace(hour=10, minute=0, second=0)),
("next weekend", (now + timedelta(days=((5 - now.weekday()) % 7) + 7)).replace(hour=10, minute=0, second=0)),
("下週一下午三點", (now + timedelta(days=(7 - now.weekday() + 0) % 7)).replace(hour=15, minute=0, second=0)),
("昨天下午五點", (now - timedelta(days=1)).replace(hour=17, minute=0, second=0)),
("昨天早上八點", (now - timedelta(days=1)).replace(hour=8, minute=0, second=0)),
("later this evening", now.replace(hour=20, minute=0, second=0)),
("現在", now),
("last month", (now - timedelta(days=30)).replace(hour=12, minute=0, second=0)),
("early tomorrow morning", now.replace(hour=6, minute=0, second=0) + timedelta(days=1)),
("in 2 hours", now + timedelta(hours=2)),
("in one hour", now + timedelta(hours=1)),
("in 30 minutes", now + timedelta(minutes=30)),
("in a few minutes", now + timedelta(minutes=10)),
]
# 加入 local time 說明在 Examples 區段
examples_header = f"""Assume the current local time in {location} is exactly:
**{now.strftime('%Y-%m-%d %H:%M:%S')}** (timezone: {tz_str})
Use this exact time to reason all examples below.
"""
examples_str = "\n".join([f'User Query: "{q}" → {dt.strftime("%Y-%m-%d %H:%M:%S")}' for q, dt in examples])
# Step 4: 构建完整 prompt
# Step 4: 构建完整 prompt
time_query_prompt = f"""
You are a timezone-aware time reasoner. Based on the user's query, calculate the **exact target time** they are referring to.
Remember: all relative expressions like "later", "in 2 hours", "tomorrow" must be strictly calculated based on the current local time above.
{examples_header}
Please return the result in this **exact format**: `YYYY-MM-DD HH:MM:SS` (24-hour clock, no timezone info).
Only return the time string — no explanation, no extra words.
### Examples:
{examples_str}
### Now process:
User Query: "{query}"
→
"""
time_response = llm_gpt4.invoke(time_query_prompt)
time_str = time_response.content.strip() if isinstance(time_response, AIMessage) else str(time_response).strip()
# Step 5: 嘗試解析時間
try:
target_time = datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
target_time = target_time.replace(tzinfo=ZoneInfo(tz_str))
return target_time
except Exception:
return f"Failed to parse time string from LLM: '{time_str}'"
except Exception as e:
return f"Error in retrieving location or time information: {e}"
def weather_agent_tool(query: str) -> str:
"""Weather Agent: Return current, hourly, or historical weather info using WeatherAPI."""
try:
weather_api_key = os.environ.get("WEATHER_API_KEY")
if not weather_api_key:
return "Weather API key not found. Please set WEATHER_API_KEY env variable."
# Step 1: Extract location
location_prompt = f"""
You are a location extractor. Given a user's query about weather, extract the location mentioned in it.
If not found, return "London".
Examples:
- "Is it gonna rain in Tokyo?" → Tokyo
- "Will it be hot in New York later?" → New York
- "明天下午高雄會不會下雨?" → Kaohsiung
- "How’s the weather?" → London
Query: "{query}"
"""
location_resp = llm_gpt4.invoke(location_prompt)
location = location_resp.content.strip() if isinstance(location_resp, AIMessage) else str(location_resp).strip()
# Step 2: Get timezone and time
target_dt = get_time_tool2(query)
# if isinstance(target_dt, str):
# target_dt = datetime.strptime(target_dt, "%Y-%m-%d %H:%M:%S")
if not isinstance(target_dt, datetime):
return f"Failed to parse the target time from your query. Got: {target_dt}"
tz_str = location_to_timezone(location)
target_dt = target_dt.replace(tzinfo=ZoneInfo(tz_str))
now = datetime.now(ZoneInfo(tz_str)) # 用同一時區的 now 去比較!
# Step 3: Check limits and decide API
if target_dt < now - timedelta(days=7):
return "Only supports up to 7 days of historical data."
elif target_dt > now + timedelta(days=2):
return "Only supports up to 3 days of forecast."
if target_dt < now:
url = f"http://api.weatherapi.com/v1/history.json?key={weather_api_key}&q={location}&dt={target_dt.strftime('%Y-%m-%d')}"
else:
url = f"http://api.weatherapi.com/v1/forecast.json?key={weather_api_key}&q={location}&days=3&aqi=no&alerts=no"
data = requests.get(url).json()
forecast_hours = []
if "forecast" in data:
for day in data["forecast"]["forecastday"]:
for hour in day["hour"]:
forecast_hours.append(hour)
elif "forecastday" in data:
forecast_hours = data["forecastday"][0]["hour"]
else:
return "No forecast data available."
# Step 4: Find closest hour
min_diff = float("inf")
closest_hour = None
for hour_data in forecast_hours:
hour_dt = date_parser.parse(hour_data["time"]).replace(tzinfo=ZoneInfo(tz_str))
diff = abs((hour_dt - target_dt).total_seconds())
if diff < min_diff:
min_diff = diff
closest_hour = hour_data
if not closest_hour:
return f"No hourly data found for {target_dt.strftime('%Y-%m-%d %H:%M')}."
# Step 5: Generate summary
condition = closest_hour["condition"]["text"]
temp = closest_hour["temp_c"]
feels = closest_hour["feelslike_c"]
humidity = closest_hour["humidity"]
chance_rain = closest_hour.get("chance_of_rain", 0)
hour_str = closest_hour["time"].split(" ")[1]
summary_prompt = f"""
You are a helpful weather reasoning assistant.
The user wants to know about the weather conditions at a specific time: {target_dt.strftime('%Y-%m-%d %H:%M')} in {location}.
Use the data below to answer their question. This may refer to the past, present, or future — do not assume it is the current weather.
Based on the following weather data and the user's question, think step-by-step to extract the most relevant information, and give a natural, friendly, and cautious answer in British English.
Avoid being overly confident — never say "Yes, it will..." or "Definitely." Instead, use expressions like:
- "It is very likely that..."
- "There is a high chance of..."
- "Based on the available data, it seems that..."
- "There may be..."
Also, after answering the question, include a short weather summary and a useful suggestion (e.g., bring an umbrella, wear sunscreen, avoid outdoor activities).
**Do not use markdown formatting such as `*`, `**`, or list symbols.**
--- Weather Data ---
Location: {location}
Time: {target_dt.strftime('%Y-%m-%d')} at {hour_str}
Condition: {condition}
Temperature: {temp}°C (Feels like {feels}°C)
Humidity: {humidity}%
Chance of rain: {chance_rain}%
Chance of snow: {closest_hour.get("chance_of_snow", "N/A")}%
Wind speed: {closest_hour.get("wind_kph", "N/A")} kph
UV index: {closest_hour.get("uv", "N/A")}
Cloud cover: {closest_hour.get("cloud", "N/A")}%
Visibility: {closest_hour.get("vis_km", "N/A")} km
--- User Question ---
{query}
--- Final Answer ---
"""
response = llm_gpt4.invoke(summary_prompt)
return response.content.strip() if isinstance(response, AIMessage) else str(response)
except Exception as e:
return f"Weather Agent Error: {e}"
@tool("weather")
def weather_tool(query: str) -> str:
"""Weather Agent: Return current, hourly, or historical weather info using WeatherAPI."""
try:
weather_api_key = os.environ.get("WEATHER_API_KEY")
if not weather_api_key:
return "Weather API key not found. Please set WEATHER_API_KEY env variable."
# Step 1: Extract location
location_prompt = f"""
You are a location extractor. Given a user's query about weather, extract the location mentioned in it.
If not found, return "London".
Examples:
- "Is it gonna rain in Tokyo?" → Tokyo
- "Will it be hot in New York later?" → New York
- "明天下午高雄會不會下雨?" → Kaohsiung
- "How’s the weather?" → London
Query: "{query}"
"""
location_resp = llm_gpt4.invoke(location_prompt)
location = location_resp.content.strip() if isinstance(location_resp, AIMessage) else str(location_resp).strip()
# Step 2: Get timezone and time
target_dt = get_time_tool2(query)
# if isinstance(target_dt, str):
# target_dt = datetime.strptime(target_dt, "%Y-%m-%d %H:%M:%S")
if not isinstance(target_dt, datetime):
return f"Failed to parse the target time from your query. Got: {target_dt}"
tz_str = location_to_timezone(location)
target_dt = target_dt.replace(tzinfo=ZoneInfo(tz_str))
now = datetime.now(ZoneInfo(tz_str)) # 用同一時區的 now 去比較!
# Step 3: Check limits and decide API
if target_dt < now - timedelta(days=7):
return "Only supports up to 7 days of historical data."
elif target_dt > now + timedelta(days=2):
return "Only supports up to 3 days of forecast."
if target_dt < now:
url = f"http://api.weatherapi.com/v1/history.json?key={weather_api_key}&q={location}&dt={target_dt.strftime('%Y-%m-%d')}"
else:
url = f"http://api.weatherapi.com/v1/forecast.json?key={weather_api_key}&q={location}&days=3&aqi=no&alerts=no"
data = requests.get(url).json()
forecast_hours = []
if "forecast" in data:
for day in data["forecast"]["forecastday"]:
for hour in day["hour"]:
forecast_hours.append(hour)
elif "forecastday" in data:
forecast_hours = data["forecastday"][0]["hour"]
else:
return "No forecast data available."
# Step 4: Find closest hour
min_diff = float("inf")
closest_hour = None
for hour_data in forecast_hours:
hour_dt = date_parser.parse(hour_data["time"]).replace(tzinfo=ZoneInfo(tz_str))
diff = abs((hour_dt - target_dt).total_seconds())
if diff < min_diff:
min_diff = diff
closest_hour = hour_data
if not closest_hour:
return f"No hourly data found for {target_dt.strftime('%Y-%m-%d %H:%M')}."
# Step 5: Generate summary
condition = closest_hour["condition"]["text"]
temp = closest_hour["temp_c"]
feels = closest_hour["feelslike_c"]
humidity = closest_hour["humidity"]
chance_rain = closest_hour.get("chance_of_rain", 0)
hour_str = closest_hour["time"].split(" ")[1]
summary_prompt = f"""
You are a helpful weather reasoning assistant.
The user wants to know about the weather conditions at a specific time: {target_dt.strftime('%Y-%m-%d %H:%M')} in {location}.
Use the data below to answer their question. This may refer to the past, present, or future — do not assume it is the current weather.
Based on the following weather data and the user's question, think step-by-step to extract the most relevant information, and give a natural, friendly, and cautious answer in British English.
Avoid being overly confident — never say "Yes, it will..." or "Definitely." Instead, use expressions like:
- "It is very likely that..."
- "There is a high chance of..."
- "Based on the available data, it seems that..."
- "There may be..."
Also, after answering the question, include a short weather summary and a useful suggestion (e.g., bring an umbrella, wear sunscreen, avoid outdoor activities).
**Do not use markdown formatting such as `*`, `**`, or list symbols.**
--- Weather Data ---
Location: {location}
Time: {target_dt.strftime('%Y-%m-%d')} at {hour_str}
Condition: {condition}
Temperature: {temp}°C (Feels like {feels}°C)
Humidity: {humidity}%
Chance of rain: {chance_rain}%
Chance of snow: {closest_hour.get("chance_of_snow", "N/A")}%
Wind speed: {closest_hour.get("wind_kph", "N/A")} kph
UV index: {closest_hour.get("uv", "N/A")}
Cloud cover: {closest_hour.get("cloud", "N/A")}%
Visibility: {closest_hour.get("vis_km", "N/A")} km
--- User Question ---
{query}
--- Final Answer ---
"""
response = llm_gpt4.invoke(summary_prompt)
return response.content.strip() if isinstance(response, AIMessage) else str(response)
except Exception as e:
return f"Weather Agent Error: {e}"
@tool("summarise")
def summarise_tool(query: str) -> str:
"""Summarise: Use document summarisation functionality."""
global session_retriever, session_qa_chain
if session_retriever is None:
return "No document uploaded."
try:
docs = session_retriever.get_relevant_documents(query if query.strip() else "summary")
if not docs:
return "No relevant content found in the document."
summarize_chain = load_summarize_chain(llm_gpt4, chain_type="refine", question_prompt=initial_prompt, refine_prompt=refine_prompt)
summary = summarize_chain.invoke(docs)
return summary['output_text']
except Exception as e:
return f"Summarisation error: {e}"
def _calc_tool(query: str) -> str:
import math
import re
try:
# Handle pure arithmetic expressions (only numbers and symbols)
if re.fullmatch(r"[0-9\.\+\-\*/%\^\(\)\s]+", query.strip()):
cleaned = query.strip().replace("^", "**")
result = ne.evaluate(cleaned)
return f"The result is: {result}"
# For expressions containing sin/cos/log etc., automatically apply math + radians
expr = query.lower()
expr = re.sub(r'sin\(([^)]+)\)', r'sin(math.radians(\1))', expr)
expr = re.sub(r'cos\(([^)]+)\)', r'cos(math.radians(\1))', expr)
expr = re.sub(r'tan\(([^)]+)\)', r'tan(math.radians(\1))', expr)
expr = expr.replace("^", "**")
result = eval(expr, {"__builtins__": None}, {
"math": math, "sin": math.sin, "cos": math.cos, "tan": math.tan,
"log": math.log10, "sqrt": math.sqrt, "exp": math.exp,
"pi": math.pi, "e": math.e
})
return f"The result is: {result}"
except Exception:
try:
# Fallback: ask GPT to calculate and explain briefly in plain English (avoid messy symbols)
response = llm_gpt4.invoke(f"Please calculate this and explain briefly in plain English: {query}. Avoid math symbols like $ or \\n or \\(.")
result = response.content if isinstance(response, AIMessage) else response
result = re.sub(r"\\\[.*?\\\]", "", result) # Remove \[...\]
result = re.sub(r"\\\(.*?\\\)", "", result) # Remove \(...\)
return result.strip()
except Exception as e:
return f"Natural language fallback error: {e}"
@tool("python_calc")
def python_calc_tool(query: str) -> str:
"""Python Calculation: Perform basic arithmetic or logical operations."""
try:
result = ne.evaluate(query)
return str(result)
except Exception as e:
return f"Calculation error: {e}"
def _search_web_tool(query: str) -> str:
return search_web(query)
@tool("search_tool")
def search_tool_func(query: str) -> str:
"""Search: Perform web searches using external search engines."""
return search_web(query)
@tool("uploaded_qa")
def uploaded_qa_tool_func(query: str) -> str:
"""Document QA: Answer questions based on the uploaded document content."""
global session_qa_chain
if session_qa_chain is not None:
try:
return session_qa_chain.run(query)
except Exception as e:
return f"Document QA error: {e}"
else:
return "No document uploaded."
@tool("csv_agent")
def csv_tool_func(query: str) -> str:
"""CSV Agent: Use natural language to analyse uploaded CSV files."""
global csv_dataframe
if csv_dataframe is None:
return "No CSV file uploaded."
try:
agent = create_pandas_dataframe_agent(llm=llm_gpt4, df=csv_dataframe, verbose=True)
return agent.run(f"Here is the table:\n{csv_dataframe.head().to_string(index=False)}\n\n{query}")
except Exception as e:
return f"CSV Agent error: {e}"
# Establish CrewAI agents (for Tab 5 only)
general_agent = Agent(
role="General Assistant",
goal="Respond to any general query that is not related to documents or CSV files.",
backstory="You're an intelligent assistant who answers questions about anything general, such as math, dates, or general knowledge.",
tools=[general_chat_tool],
verbose=True
)
summarizer_agent = Agent(
role="Document Summarizer",
goal="Summarise the content of the uploaded document.",
backstory="You are a professional summarisation expert who can identify key points in long documents.",
tools=[summarise_tool],
verbose=True
)
document_qa_agent = Agent(
role="Document QA Specialist",
goal="Answer questions based on the uploaded document.",
backstory="You are an expert in document understanding and can accurately extract answers.",
tools=[uploaded_qa_tool_func],
verbose=True
)
search_agent = Agent(
role="Search Expert",
goal="Search the web and provide relevant information.",
backstory="You are an expert at finding relevant information from the internet.",
tools=[search_tool_func],
verbose=True
)
time_agent = Agent(
role="Time Assistant",
goal="Answer current time or date related questions across different time zones.",
backstory="You're a time-aware agent who can tell time or date in any major city.",
tools=[time_tool],
verbose=True
)
weather_agent = Agent(
role="Weather Expert",
goal="Answer global weather queries.",
backstory="You are a weather analyst who provides accurate and real-time weather information for any location.",
tools=[weather_tool],
verbose=True
)
math_agent = Agent(
role="Math Assistant",
goal="Perform accurate arithmetic or logical calculations.",
backstory="You are a calculator expert skilled at quick computations.",
tools=[python_calc_tool],
verbose=True
)
csv_agent = Agent(
role="CSV Analyst",
goal="Analyse tabular data and answer questions about the uploaded CSV file.",
backstory="You are skilled in interpreting tabular datasets and can extract numerical or logical insights.",
tools=[csv_tool_func],
verbose=True
)
router_agent = Agent(
role="Query Router",
goal="Determine the most suitable agent or tool to handle the user query.",
backstory="You are an intelligent query dispatcher that analyses the user's intent and chooses the best AI agent to answer.",
tools=[python_calc_tool, search_tool_func, csv_tool_func, uploaded_qa_tool_func, summarise_tool, general_chat_tool, time_tool, weather_tool],
verbose=True
)
router_task = Task(
description="""
Based on the user's query, decide which agent or tool is best suited to handle it:
- If the query is related to the content of an uploaded file (e.g., 'what is this document about?'), send it to the **Document QA Agent**.
- If the query contains words like 'summarize', 'summary', or 'main points', use the **Summarizer Agent**.
- If the query **includes any numbers or symbols** (like +, -, *, /, %, ^), or **mentions math terms** (like 'calculate', 'how much', 'percent', 'square root', 'log', 'cos', 'sin', etc.), or starts with 'what is', 'what’s', 'how much is', assume it is a **math question** and send it to the **Math Agent**.
- If the user uploaded a CSV file and asks about table content, data trends, or uses words like 'data', 'table', 'csv', 'column', or 'row', send it to the **CSV Agent**.
- If the user asks about current events, trending topics, or online information (e.g., 'What is LangChain?', 'latest news'), send it to the **Search Agent**.
- If the query is about current date, time, or day of week (e.g., 'what is today's date?', 'what time is it?', 'what day is it?', '現在幾點', '今天幾號', '禮拜幾'), send it to the **Time Agent**.
- If the query is about weather, rain, temperature, or forecasts (e.g., "What's the weather in Paris?", "Will it rain tomorrow in London?"), send it to the **Weather Agent**.
- If the question is general and not related to documents, calculations, CSVs, or the internet (e.g., 'Who are you?', 'Tell me a fun fact'), send it to the **General Agent**.
- If none of these apply, use your best judgment to choose the most relevant agent.
""",
expected_output="The final answer from the selected agent or tool.",
agent=router_agent,
input_variables=["query"]
)
crew = Crew(
agents=[general_agent, summarizer_agent, document_qa_agent, search_agent, math_agent, time_agent, csv_agent, weather_agent],
tasks=[router_task],
process=Process.sequential,
verbose=True,
llm=crew_llm
)
# test qa
def build_langgraph_doc_qa_chain(llm, retriever, memory, prompt):
def retrieve_step(state):
docs = state['retriever'].get_relevant_documents(state['query'])
return {"docs": docs, **state}
def answer_step(state):
prompt = state["prompt"]
llm = state["llm"]
docs = state["docs"]
llm_chain = LLMChain(llm=llm, prompt=prompt)
doc_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="context"
)
# 只執行一次,並傳入所有需要的參數
answer = doc_chain.run({
"input_documents": docs,
"question": state["query"]
})
return {"answer": answer, **state}
builder = StateGraph(dict)
builder.add_node("Retrieve", retrieve_step)
builder.add_node("Answer", answer_step)
builder.set_entry_point("Retrieve")
builder.add_edge("Retrieve", "Answer")
builder.set_finish_point("Answer")
compiled = builder.compile()
def run(query):
return compiled.invoke({
"query": query,
"retriever": retriever,
"llm": llm,
"prompt": prompt
})
return run
@traceable(name="Multi-Agent Chat")
def multi_agent_chat_advanced(query: str, file=None) -> str:
global session_retriever, session_qa_chain, csv_dataframe
# Smart routing without needing uploaded files
lower_query = query.lower()
math_keywords = ["how much", "calculate", "what is", "what’s", "%", "sin", "cos", "log", "sqrt", "^", "*", "/", "+", "-", "="]
if any(k in lower_query for k in math_keywords):
return _calc_tool(query)
date_keywords = ["what date", "today", "what time", "what day", "current time", "date", "現在幾點", "今天幾號", "禮拜幾"]
if any(k in lower_query for k in date_keywords):
return get_time_tool(query)
weather_keywords = ["weather", "rain", "snow", "cold", "hot", "sunscreen", "sunglasses", "umbrella", "windy", "cloudy", "sunny", "temperature", "forecast", "天氣", "會不會下雨", "冷嗎", "熱嗎", "氣溫"]
if any(k in lower_query for k in weather_keywords):
return weather_agent_tool(query)
search_keywords = ["latest", "news", "startup", "startups", "company", "companies", "top", "trending", "in 2025", "in 2024", "tell me"]
if any(k in lower_query for k in search_keywords):
return search_web(query)
general_keywords = ["who are you", "what is your name", "what can you do", "fun fact"]
if any(k in lower_query for k in general_keywords):
return _general_chat(query)
# Check if file exists and determine its format
file_path = get_file_path(file) if file is not None else None
# Determine if the query should be processed as document-related
non_doc_keywords = ["calculate", "sum", "date", "time", "how many", "how much", "weather", "temperature"]
use_file_chain = not any(kw in query.lower() for kw in non_doc_keywords)
# Step 3: If a file is uploaded
if file_path:
file_lower = file_path.lower()
# Process CSV
if file_lower.endswith(".csv"):
try:
with open(file_path, 'rb') as f:
result = chardet.detect(f.read())
encoding = result['encoding']
df = pd.read_csv(file_path, encoding=encoding)
csv_dataframe = df # Ensure global assignment
# If query mentions file, add context
if "file" in query.lower() or "upload" in query.lower():
query = f"The user uploaded the following CSV file:\n\n{query}"
result = crew.kickoff(inputs={"query": query})
return safe_format_result(result)
except Exception as e:
return f"CSV Parsing Error: {e}"
# 3-2: Process PDF / DOCX / TXT
elif file_lower.endswith((".pdf", ".txt", ".docx")):
try:
loader = (
PyPDFLoader(file_path) if file_lower.endswith(".pdf")
else UnstructuredWordDocumentLoader(file_path) if file_lower.endswith(".docx")
else TextLoader(file_path)
)
docs = loader.load()
chunks = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(docs)
db = FAISS.from_documents(chunks, embeddings)
session_retriever = db.as_retriever()
session_qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm_gpt4,
retriever=session_retriever,
memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
)
# If the query is summary-related, use Summarize Chain
if any(kw in query.lower() for kw in ["summarize", "summary", "summarise", "summarisation", "summarization", "摘要", "總結"]):
return document_summarize(file_path)
# If using QA Chain is appropriate
if use_file_chain:
try:
answer = session_qa_chain.run(query)
#session_graph_chain = build_langgraph_doc_qa_chain(llm_gpt4, session_retriever, memory, custom_prompt)
#answer = session_graph_chain(query)["answer"]
# ✅ DeepEval 評估僅在 Tab1 文件 QA 的情況下觸發
if SHOW_EVAL:
try:
test_case = LLMTestCase(
input=query,
actual_output=answer,
expected_output=answer,
context=[d.page_content for d in session_retriever.get_relevant_documents(query)[:3]]
)
metric = AnswerRelevancyMetric(model="gpt-4o-mini")
results = evaluate([test_case], [metric])
result = results[0]
print(f"[DeepEval Tab1] Input: {query}")
print(f"[DeepEval Tab1] Passed: {result.passed}, Score: {result.score:.2f}, Reason: {result.reason}")
except Exception as e:
print(f"[DeepEval Tab1] Evaluation failed: {e}")
return answer
except Exception as e:
return f"Document QA Error: {e}"
# Otherwise, proceed with Multi-Agent reasoning
if "file" in query.lower() or "upload" in query.lower():
query = f"The user uploaded the following document:\n\n{query}"
result = crew.kickoff(inputs={"query": query})
return safe_format_result(result)
except Exception as e:
return f"Document Processing Error: {e}"
else:
return "Unsupported file format."
# Step 4: If no file is uploaded, directly use CrewAI reasoning
try:
result = crew.kickoff(inputs={"query": query})
return safe_format_result(result)
except Exception as e:
return f"Multi-Agent Error: {e}"
# LangGraph 使用的節點函數(會接續你的 Crew Agent)
# 初始化 embedding model
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
# Intent Embedding 分類(支援檔名)
INTENT_LABELS = {
"DocQA": ["document", "file", "paper", "cb", "proposal", "project"],
"Summarise": ["summarise", "summary", "abstract", "key points", "overview", "main points"],
"General": ["who are you", "tell me something", "what can you do", "fun fact"],
}
def parse_query(query: str) -> dict:
prompt = """Analyze the following query and determine required subtasks. Return a JSON object containing:
- summarize_files: list of document indices to summarize
- qa_pairs: list of QA objects [{"question": "question", "doc_indices": [relevant doc indices]}]
- compare_files: list of document index pairs to compare [[doc1_idx, doc2_idx]]
- find_relations: boolean, whether to analyze document relationships
For example, query "What are the differences between document A and B, and summarize A" should return:
{
"summarize_files": [0],
"qa_pairs": [],
"compare_files": [[0, 1]],
"find_relations": false
}
Query: """ + query
response = llm_gpt4.invoke(prompt)
try:
return json.loads(response.content)
except:
return {
"summarize_files": [],
"qa_pairs": [{"question": query, "doc_indices": [0]}],
"compare_files": [],
"find_relations": False
}
def autogen_multi_document_analysis(query: str, docs: list, file_names: list) -> str:
try:
# 建立絕對路徑的暫存目錄,並確保它存在
import tempfile
import os
# 建立一個臨時工作目錄
temp_dir = tempfile.mkdtemp(dir="/tmp")
os.environ["OPENAI_CACHE_DIR"] = temp_dir
# 設置 AutoGen 的工作目錄
os.environ["AUTOGEN_CACHE_PATH"] = temp_dir
os.environ["AUTOGEN_CACHEDIR"] = temp_dir
os.environ["OPENAI_CACHE_PATH"] = temp_dir
# 強制 AutoGen 使用我們的臨時目錄而不是 ./.cache
import autogen
if hasattr(autogen, "set_cache_dir"):
autogen.set_cache_dir(temp_dir)
# 準備文件上下文
context = "\n\n".join(
f"Document {name}:\n{doc[:2000]}..."
for name, doc in zip(file_names, docs)
)
# 配置 LLM
config_list = [{
"model": "gpt-4o-mini",
"api_key": openai_api_key
}]
# 基礎配置 - 不包含任何緩存相關參數
llm_config = {
"config_list": config_list,
"temperature": 0
}
# 在進行 AutoGen 處理前,切換到臨時目錄
original_dir = os.getcwd()
os.chdir(temp_dir)
try:
# 以下是您的 AutoGen 處理代碼
user_proxy = UserProxyAgent(
name="User",
system_message="A user seeking information from multiple documents.",
human_input_mode="NEVER",
code_execution_config={"use_docker": False},
llm_config=llm_config
)
# 定義文檔分析專家
doc_analyzer = AssistantAgent(
name="DocumentAnalyzer",
system_message="""You are an expert at analyzing and comparing documents. Focus on:
1. Key similarities and differences
2. Main themes and topics
3. Relationships between documents
4. Evidence-based analysis""",
llm_config=llm_config
)
# 定義問答專家
qa_expert = AssistantAgent(
name="QAExpert",
system_message="""You are an expert at extracting specific information. Focus on:
1. Finding relevant details
2. Answering specific questions
3. Cross-referencing information
4. Providing evidence""",
llm_config=llm_config
)
# 定義總結專家
summarizer = AssistantAgent(
name="Summarizer",
system_message="""You are an expert at summarizing content. Focus on:
1. Key points and findings
2. Important relationships
3. Critical conclusions
4. Comprehensive overview""",
llm_config=llm_config
)
# 創建群組聊天
groupchat = GroupChat(
agents=[user_proxy, doc_analyzer, qa_expert, summarizer],
messages=[],
max_round=5
)
# 創建管理器
manager = GroupChatManager(
groupchat=groupchat,
llm_config=llm_config
)
# 準備任務提示
task_prompt = f"""Analyze these documents and answer the query:
Query: {query}
Documents Context:
{context}
Requirements:
1. Provide a direct and clear answer
2. Support all claims with evidence from the documents
3. Consider relationships between all documents
4. If comparing, analyze all relevant aspects
5. If summarizing, cover all important points
6. If looking for specific content, search thoroughly
7. If analyzing relationships, consider all connections
Please provide a comprehensive and well-structured answer."""
# 執行群組討論
user_proxy.initiate_chat(manager, message=task_prompt)
return user_proxy.last_message()["content"]
finally:
# 完成後,切回原始目錄
os.chdir(original_dir)
return result
except Exception as e:
print(f"ERROR in AutoGen processing: {str(e)}")
return f"Error analyzing documents: {str(e)}"
# === AutoGen 多代理人協作邏輯 ===
def detect_intent_embedding(query, file_names=[]):
query_emb = embedding_model.encode(query, normalize_embeddings=True)
best_label = None
best_score = -1
all_phrases = INTENT_LABELS.copy()
if file_names:
all_phrases["DocQA"] += [name.lower() for name in file_names]
for label, examples in all_phrases.items():
for example in examples:
example_emb = embedding_model.encode(example, normalize_embeddings=True)
score = float(query_emb @ example_emb.T)
if score > best_score:
best_score = score
best_label = label
return best_label if best_label else "General"
def decide_next(state):
query = state.get("query", "")
file_names = state.get("file_names", [])
label = detect_intent_embedding(query, file_names)
return label
# === 定義 Task 物件 ===
docqa_task = Task(
description="Document QA Task: Answer questions based on the uploaded document.",
expected_output="Answer from Document QA Agent.",
agent=document_qa_agent,
input_variables=["query"]
)
general_task = Task(
description="General Chat Task: Answer general queries.",
expected_output="Answer from General Agent.",
agent=general_agent,
input_variables=["query"]
)
summariser_task = Task(
description="Summarisation Task: Summarise document content.",
expected_output="Summary output.",
agent=summarizer_agent, # 注意此處名稱須與定義一致(使用字母 z)
input_variables=["query"]
)
search_task = Task(
description="Search Task: Retrieve information from the web.",
expected_output="Answer from Search Agent.",
agent=search_agent,
input_variables=["query"]
)
# === LangGraph 節點函數 ===
def general_run(state):
"""改用直接 LLM 回答取代 General Agent"""
try:
prompt = f"""You are a helpful AI assistant. Please answer the following question:
{state["query"]}
Provide a clear and informative answer."""
response = llm_gpt4.invoke(prompt)
answer = response.content if hasattr(response, 'content') else str(response)
return {"answer": answer}
except Exception as e:
print(f"ERROR in general_run: {str(e)}")
return {"answer": "I apologize, but I'm having trouble processing your request."}
def docqa_run(state):
"""文件問答處理"""
try:
# 如果有檢索器,使用檢索器
if "retriever" in state:
relevant_docs = state["retriever"].get_relevant_documents(state["query"])
context = "\n".join(d.page_content for d in relevant_docs)
else:
context = "\n".join(state["docs"])
prompt = f"""Based on the following context, please answer the question:
Question: {state["query"]}
Context:
{context[:3000]}
Provide a detailed and accurate answer based on the context."""
response = llm_gpt4.invoke(prompt)
return {"answer": response.content if hasattr(response, 'content') else str(response)}
except Exception as e:
print(f"ERROR in docqa_run: {str(e)}")
return general_run(state)
def summariser_run(state):
"""文件摘要處理"""
try:
context = "\n".join(state["docs"])
prompt = f"""Please provide a comprehensive summary of the following document:
{context[:3000]}
Focus on:
1. Main topics and key points
2. Important findings or conclusions
3. Significant details"""
response = llm_gpt4.invoke(prompt)
return {"summary": response.content if hasattr(response, 'content') else str(response)}
except Exception as e:
print(f"ERROR in summariser_run: {str(e)}")
return {"summary": "Error generating summary."}
# === LangGraph 定義 ===
def build_langgraph_pipeline():
graph = StateGraph(dict)
graph.add_node("Router", lambda state: state) # Router 僅傳遞狀態
graph.add_node("DocQA", docqa_run)
graph.add_node("General", general_run)
graph.add_node("Summarise", summariser_run)
graph.set_entry_point("Router")
graph.add_conditional_edges("Router", decide_next, {
"DocQA": "DocQA",
"General": "General",
"Summarise": "Summarise",
})
graph.set_finish_point("DocQA")
graph.set_finish_point("General")
graph.set_finish_point("Summarise")
return graph.compile()
from tempfile import mkdtemp
def get_file_path_tab6(file):
if isinstance(file, str):
print("DEBUG: File is a string:", file)
if os.path.exists(file):
print("DEBUG: File exists:", file)
return file
else:
print("DEBUG: File does not exist:", file)
return None
elif isinstance(file, dict):
print("DEBUG: File is a dict:", file)
data = file.get("data")
name = file.get("name")
print("DEBUG: Data:", data, "Name:", name)
if data:
if isinstance(data, str) and os.path.exists(data):
print("DEBUG: Data is a valid file path:", data)
return data
else:
temp_dir = mkdtemp()
file_path = os.path.join(temp_dir, name if name else "uploaded_file")
print("DEBUG: Writing data to temporary file:", file_path)
with open(file_path, "wb") as f:
if isinstance(data, str):
f.write(data.encode("utf-8"))
else:
f.write(data)
if os.path.exists(file_path):
print("DEBUG: Temporary file created:", file_path)
return file_path
else:
print("ERROR: Temporary file not created:", file_path)
return None
else:
print("DEBUG: No data in dict, returning None")
return None
elif hasattr(file, "save"):
print("DEBUG: File has save attribute")
temp_dir = mkdtemp()
file_path = os.path.join(temp_dir, file.name)
file.save(file_path)
if os.path.exists(file_path):
print("DEBUG: File saved to:", file_path)
return file_path
else:
print("ERROR: File not saved properly:", file_path)
return None
else:
print("DEBUG: File type unrecognized")
if hasattr(file, "name"):
if os.path.exists(file.name):
return file.name
return None
def langgraph_tab6_main(query: str, file=None):
try:
print(f"DEBUG: Starting processing with query: {query}")
# 如果沒有文件,直接使用 general_run
if not file:
return general_run({"query": query})["answer"]
# 處理文件列表
files = file if isinstance(file, list) else [file]
all_docs = []
file_names = []
docs_by_file = []
# 處理上傳的文件
for f in files:
try:
path = get_file_path_tab6(f)
if not path:
continue
file_names.append(os.path.basename(path))
# 根據文件類型選擇加載器
if path.lower().endswith('.pdf'):
loader = PyPDFLoader(path)
elif path.lower().endswith('.docx'):
loader = UnstructuredWordDocumentLoader(path)
else:
loader = TextLoader(path)
docs = loader.load()
if docs:
text = "\n".join(doc.page_content for doc in docs if hasattr(doc, 'page_content'))
docs_by_file.append(text)
all_docs.extend(docs)
except Exception as e:
print(f"ERROR processing file: {str(e)}")
continue
if not docs_by_file:
return general_run({"query": query})["answer"]
# 建立檢索器
try:
chunks = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
).split_documents(all_docs)
db = FAISS.from_documents(chunks, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 5})
global session_retriever, session_qa_chain
session_retriever = retriever
session_qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm_gpt4,
retriever=retriever,
memory=ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
),
)
except Exception as e:
print(f"ERROR setting up retriever: {str(e)}")
retriever = None
# 檢測是否為多文件查詢
# 檢測是否為多文件查詢或複雜查詢
if len(docs_by_file) > 1 or "compare" in query.lower() or "relation" in query.lower():
return autogen_multi_document_analysis(query, docs_by_file, file_names)
# 使用 LangGraph 處理單文件查詢
state = {
"query": query,
"file_names": file_names,
"docs": docs_by_file,
"retriever": retriever
}
# 根據查詢意圖選擇處理方式
intent = detect_intent_embedding(query, file_names)
if intent == "Summarise":
return summariser_run(state)["summary"]
elif intent == "DocQA":
return docqa_run(state)["answer"]
else:
return general_run(state)["answer"]
except Exception as e:
print(f"ERROR in main function: {str(e)}")
return f"I apologize, but I encountered an error: {str(e)}"
# Gradio Interface Settings
demo_description = """
**Context**:
This demo uses a **Retrieval-Augmented Generation (RAG)** system based on
Biden’s 2023 State of the Union Address.
All responses are grounded in this document.
If no relevant information is found in the document, the system will say "No relevant info found."
**Sample Questions**:
1. What were the main topics regarding infrastructure in this speech?
2. How does the speech address the competition with China?
3. What does Biden say about job growth in the past two years?
4. Does the speech mention anything about Social Security or Medicare?
5. What does the speech propose regarding Big Tech or online privacy?
*Note: The LLaMA module generates responses based solely on the current query without follow-up memory or chat history management.*
> This is a CPU-only demo running a **quantised 1B LLaMA model**, built to show that full RAG + multi-agent systems can run even without a GPU. In production, the model can be replaced with larger ones (3B, 7B, etc.) and served using vLLM, 4-bit quantisation, or TensorRT for better speed. The design focuses on portability, deployment, and modularity.
Feel free to ask any question related to Biden’s 2023 State of the Union Address.
"""
demo_description2 = """
**Context**:
This demo uses a **Retrieval-Augmented Generation (RAG)** system based on
Biden’s 2023 State of the Union Address.
All responses are grounded in this document.
If no relevant information is found in the document, the system will say "No relevant info found."
**Sample Questions**:
1. What were the main topics regarding infrastructure in this speech?
2. How does the speech address the competition with China?
3. What does Biden say about job growth in the past two years?
4. Does the speech mention anything about Social Security or Medicare?
5. What does the speech propose regarding Big Tech or online privacy?
*Note: The GPT module supports follow-up questions with conversation history management, enabling more interactive and context-aware discussions.*
Feel free to ask any question related to Biden’s 2023 State of the Union Address.
"""
demo_description3 = """
**Context**:
Upload a PDF, TXT, or DOCX file and ask a question about its content.
This demo uses **GPT-4o-Mini** to answer questions based on the content of your uploaded document.
Note: This is a **strict RAG-based QA** system. It will only answer questions if the answer is explicitly found in the uploaded document.
For more flexible or general-purpose responses, please try Tab 1 (Multi-Agent Assistant).
Typical Use Cases:
- Legal, technical, or academic documents where factual precision is critical
- Internal company reports where hallucination must be avoided
- Medical papers where only referenced content should be discussed
Feel free to ask any question directly related to your document.
"""
demo_description4 = """
**Context**:
This demo uses a **refinement-based document summarisation chain**.
Upload a PDF, TXT, or DOCX file to get a concise, structured summary of its contents.
"""
demo_description5 = """
**Context**:
This demo presents a GPT-style Multi-Agent AI Assistant, built with **LangChain, CrewAI**, and **RAG (Retrieval-Augmented Generation)**. The system automatically understands your intent and routes the query to the best expert agent, enabling dynamic **multi-agent orchestration**.
**Supported features**:
- 📄 **Document Summarisation** (PDF, DOCX, TXT)
- ❓ **FAQ-style Q&A based on uploaded documents** (RAG-based)
- 🌐 **Live Web Search** (Online RAG + GPT post-processing summary)
- 📅 **Real-time Worldwide Date & Time** (LLM + GeoLocator + TimezoneFinder, supports any city globally)
- 🌦️ **Global Weather** (LLM Time Reasoning + Timezone + Few-Shot, supports fuzzy queries, 3-day forecast, 7-day history, hourly precision)
- ➗ **Math and Logic Calculations** (from scientific equations to financial or tax-related use cases)
- 💬 **General Chatting / Reasoning**
**Sample Questions**:
1. Summarise the document. *(→ Summarisation Agent)*
2. What are the key ideas mentioned in this file? *(→ RAG QA Agent)*
3. What is LangChain used for? | What are the latest trends in AI startups in 2025? | Tell me the most recent breakthrough in quantum computing. *(→ Online Rag Agent)*
4. What's the current time in London? | What’s today’s date in New York? | What time is it in Taipei right now? *(→ Time Agent)*
5. Will it rain or snow in Sapporo tomorrow night? | Is it too windy for cycling in Amsterdam at 6am? | Do I need to bring an umbrella later this evening in Edinburgh? | Should I wear sunscreen in Bangkok around noon tomorrow? | Is it gonna rain later? | What was the weather like in Paris on last Sunday? | Will the weather be suitable for hiking at 3pm in Lake District? *(→ Weather Agent)*
6. If I earn $15 per hour and work 8 hours a day for 5 days, how much will I earn? | What is 5 * 22.5 / sin(45) | 3^3 + 4^2 | Calculate 25 * log(1000) | What is the square root of 144 *(→ Math Agent)*
7. Who are you? | What can you do? | What is the meaning of life? *(→ General Chat Agent)*
Feel free to upload a document and ask related questions, or just type a question directly—no file upload required. *Note: CSV file analysis and auto visualisation is coming soon.*
"""
demo_description6 = """
**Context**:
This is a **smart multi-document reasoning assistant**, powered by **LangGraph**, **CrewAI**, and **AutoGen**.
Upload zero to multiple files and ask anything — the system will uses **embedding-based intent detection** to decide whether to summarise, extract, compare, or analyse relationships.
For complex multi-file tasks, it triggers a **collaborative AutoGen team** to deeply reason across documents and generate contextual, evidence-based answers.
**Supported Features**:
- 📄 Multi-document support (PDF, DOCX, TXT)
- 🔍 Embedding-based intent detection and semantic routing
- 🤖 Agents: Summariser, QA Agent, General Agent, Search Agent
- 🔀 Orchestrated by LangGraph + AutoGen (fallbacks + task handoff)
- 🧠 AutoGen multi-agent collaboration for cross-file reasoning
- 🌐 Online search fallback if all the other agent can't handle tasks
**Sample Questions**:
1. Who are you? | What is GPT4? *(→ General Chat Agent)*
2. Summarise the document/file/your_doc_name. *(→ Summarisation Agent)*
3. What is LangChain used for? | What are the latest trends in AI startups in 2025? | Tell me the most recent breakthrough in quantum computing. *(→ Online Rag Agent)*
4. What's the title in the document? | What are the key ideas mentioned in this file? *(→ RAG QA Agent)*
5. Compare the proposals in DocA and DocB. | Summarise all files. | Is DocA one of the project in the DocB or DocC. | Which argument is stronger across these files? | Do these documents mention similar policies? | What's the difference between the files? *(→ AutoGen)*
6. What is LangChain used for? | What are the latest trends in AI startups in 2025? | Tell me the most recent breakthrough in quantum computing. *(→ Online Rag Agent)*
> Built for users who need clear, explainable, and context-aware answers — whether you’re working on documents in law, finance, research, or tech.
"""
demo = gr.TabbedInterface(
interface_list=[
gr.Interface(
fn=langgraph_tab6_main,
inputs=[
gr.Textbox(label="Ask anything"),
gr.File(label="Upload one or more files", file_types=[".pdf", ".txt", ".docx"], file_count="multiple")
],
outputs="text",
title="Smart Multi-Doc QA (LangGraph + AutoGen)",
allow_flagging="never",
description=demo_description6
),
gr.Interface(
fn=multi_agent_chat_advanced,
inputs=[
gr.Textbox(label="Enter your query"),
gr.File(label="Upload file (CSV, PDF, TXT, DOCX)", file_types=[".pdf", ".txt", ".docx"], file_count="single")
],
outputs="text",
title="Multi-Agent AI Assistant",
allow_flagging="never",
description=demo_description5
),
gr.Interface(
fn=document_summarize,
inputs=[gr.File(label="Upload PDF, TXT, or DOCX", file_types=[".pdf", ".txt", ".docx"])],
outputs="text",
title="Document Summarisation",
allow_flagging="never",
description=demo_description4
),
gr.Interface(
fn=upload_and_chat,
inputs=[gr.File(label="Upload PDF, TXT, or DOCX", file_types=[".pdf", ".txt", ".docx"]), gr.Textbox(label="Ask a question")],
outputs="text",
title="Your Docs Q&A (Upload + GPT-4 RAG)",
allow_flagging="never",
description=demo_description3
),
gr.Interface(
fn=rag_gpt4_qa,
inputs="text",
outputs="text",
title="Biden Q&A (GPT-4 RAG)",
allow_flagging="never",
description=demo_description2
),
gr.Interface(
fn=rag_llama_qa,
inputs="text",
outputs="text",
title="Biden Q&A (LLaMA RAG)",
allow_flagging="never",
description=demo_description
),
],
tab_names=[
"Multi-Doc QA",
"Multi-Agent AI Assistant",
"Document Summarisation",
"Your Docs Q&A (Upload + GPT-4 RAG)",
"Biden Q&A (GPT-4 RAG)",
"Biden Q&A (LLaMA RAG)",
],
title="Smart RAG + Multi-Agent Assistant (with Web + Document AI)"
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |